
CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

General judging notes

• Basic format: students (in groups of 1, 2 or 3) will come from their table to you with
their solution to a problem, and explain it to you. They can also come if they’re stuck
and need some help. If you think they should move on to the next problem, hand it to
them (printed on a piece of paper), along with a Mentos, and they’ll go back to their
table.

• Be helpful and encouraging. Some weaker students will likely attend, so identify their
strengths and make them feel good about them.

• If a student/group presents a solution that doesn’t quite work, preferably they will fix it
on the spot, or go back to their table to think more, and you can provide a hint if they
want one. Alternatively, if you think it’s more appropriate (e.g. they seem stressed),
consider letting them move on to the next problem.

• Ask for clarification if their algorithm is unclear, it should be a two-way dialogue.

• Ask them to state and justify their algorithm’s time complexity.

• Ask for an informal justification of their algorithm’s correctness (since proving correct-
ness is a key skill learned in the course).

• Adjust the level of detail and rigour required to move on based on the length of the
queue. At the beginning the queue will likely build up, so let people move on very
quickly.

• Feel free to ask other tutors (Ryan and Isaiah are familiar with all the problems) if you
need any assistance when judging.

• If the queue is empty, feel free to get up and talk to students at their tables and see how
they’re going. Or join another tutor and judge with them.

Question 1 Blocks

You are given n stacks of identical blocks. The ith stack contains a positive number of blocks, let
us denote this as hi. You are also able to move any number of blocks from the ith stack to the
(i + 1)th stack, as long as every stack always contains a positive number of blocks. You want to
know if the sizes of the stacks can be made strictly increasing. For example ⟨1, 3, 6, 8⟩ is strictly
increasing, but ⟨1, 4, 4, 7⟩ is not.

Design an O(n) algorithm that determines whether it is possible for the stacks to be made strictly
increasing.

Use the greedy method. What is the fewest number of blocks required in the ith stack of a
strictly increasing sequence?

In a sequence of stacks with strictly increasing height, the kth stack have have height at least
k blocks, and therefore the first k stacks must have at least k(k + 1)/2 blocks.

Claim: a sequence can be made strictly increasing if and only if

k∑
i=1

hi ≥
k(k + 1)

2

for all 1 ≤ k ≤ n.

1

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

Proof:

If this inequality fails for some k, then the first k stacks cannot be made strictly increasing
in height. Since blocks can be moved to later stacks but not earlier stacks, this ensures that
the n stacks cannot be made strictly increasing.

However, if this inequality is true for all k, then we can make the blocks strictly increasing
using the following algorithm. Traverse the stacks from first to last, at each stage keeping
exactly k blocks in the kth stack and moving the rest to stack k+1. The assumed inequality
ensures that when we get to stack k, it will always have at least

k(k + 1)

2
− (k − 1)k

2
= k

blocks in it. At the last stack, no moves are available, so leave the stack as is.

Thus, we can make the sequence strictly increasing if and only if the sum of the first k initial
heights is at least k(k + 1)/2 for all 1 ≤ k ≤ n. We can check all of these inequalities in
one pass of the sequence, by maintaining the sum of the first k values hi. Each new stack
adds one term to the sum, taking O(1) to update the sum and O(1) to check it. The total
complexity is O(n).

• You can solve this problem without dealing with the k(k+ 1)/2 stuff, just sweep left to
right and greedily move as many blocks as you can.

• Ask for a justification as to why their greedy works just to keep them on their feet, but
don’t make them give more than a two sentence answer, so the queue keeps moving.

Question 2 Triangle

You are given a triangular grid of positive integers. The grid con-
sists of n rows, the ith of which has i entries. For 1 ≤ j ≤ i ≤ n,
let T (i, j) denote the jth entry in row i.

Define a route to be any path that starts at the top entry and
ends at any entry of the bottom row, with each step going either
diagonally down to the left or diagonally down to the right. Your
task is to find the largest sum of numbers that can be encoun-
tered on a route. For example, in the pictured triangular grid,
the optimal route is indicated by grey cells, and so the answer is
6 + 6 + 9 + 8 + 9 = 38.

Design a dynamic programming algorithm which solves the task in O(n2) time.

Observe that a path from the top down to T (i, j) must take some entry from row i−1. There
are at most two options for which entry to take.

Subproblems: for i ≤ j ≤ i ≤ n, let P (i, j) be the problem of determining opt(i, j), the
maximum sum of a route starting from entry T (i, j).

Recurrence: if i < n, we have

opt(i, j) = T (i, j) + max[opt(i+ 1, j), opt(i+ 1, j + 1)],

since the best route starting at (i, j) consists of the initial entry, then follows the best route

2

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

starting from either the below-left entry of below-right entry.

Base cases: For 1 ≤ j ≤ n, opt(n, j) = T (n, j) since there are no entries below row n.

Order of computation: Since the solution to P (i, j) depends on the solutions to P (i + 1, j)
and P (i+ 1, j + 1), we solve subproblems by decreasing order of i and any order of j.

Time complexity: Since all routes start at the top left entry, the final answer is opt(1, 1).

There are O(n2) subproblems, each solved in constant time, so the overall complexity if
O(n2)

• Discuss each of the five headings listed above, since this way of setting out a solution is
recommended by the course.

Question 3 Drill

UNSW is doing a fire drill. It consists of n rooms and m corridors (m ≥ n−1), where each corridor
connects two different rooms. There are x students who must be moved from room 1 to room n.
Your job is to divide the class of x students into several waves. Each wave will be released from
room 1, and make their way through the corridors. To prevent overcrowding, each corridor has
a limit li, which is the maximum number of students in a single wave who can use this corridor.
Once all students in this wave have reached room n, the next wave of students will be released
from room 1.

Design a polynomial time algorithm which determines the minimum number of waves that must
be formed.

What is the maximum number of students in a single wave?

Construct a flow network with n vertices representing the rooms. The ith corridor is repre-
sented by a pair of directed edges between the two rooms it connects, both with capacity li.
We omit edges to vertex 1 and edges from vertex n, then denote vertex 1 as the source and
vertex n as the sink. Using the Edmonds-Karp algorithm, we find a maximum flow, and let
its value be y. Note that the amount of flow through each edge i is at most the capacity li,
so any valid flow obeys the only constraint: no more than li students from each wave can use
corridor i.

Therefore y is the largest possible size of a wave, so the number of waves is minimised by
sending y students at a time. The minimum number of waves will then be ⌈x/y⌉.

Constructing the graph takes O(n+m) time and running the Edmonds-Karp algorithm takes
O(nm2) time, so the overall time complexity is O(nm2). Since n ≤ m+1 and the input is of
length at least m, this is a polynomial time algorithm.

• Get them to explain why you should let as many people through as possible in each
wave (trivial, but worth asking).

• Make sure they add edges in both directions between rooms.

• Make sure they get the ceiling function right.

Question 4 Array

There is a 1-indexed array A of n unknown integers (n ≥ 2), except that you know A[1] = 1 and
A[n] = n− 1. You are allowed to ask queries of the form “What is value at index i?”, where you
may choose any index i.

3

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

Design an algorithm which uses O(log n) queries and determines the index of an element whose
value is greater than or equal to the element immediately to its right. In other words, find an
index i such that A[i] ≥ A[i+ 1].

What information does querying the middle element give you?

Let B[i] = A[i] − i. We have B[1] = 0 and B[n] = 1. Binary search for a place where B
increases, i.e. an index i where B[i] < B[i+ 1].

More details: Initially let l = 1 and r = n. While r − l > 1, let m = ⌊(l + r)/2⌋ and get
B[m] = A[m] −m. If B[m] > A[l], set r = m to recurse left, otherwise B[m] < A[r], so set
l = m to recurse right. The invariant is that A[l] < A[r]. The final answer is the final value
of l (which will equal r − 1).

• You can solve the problem without the array B, just query the middle element and
explain how you determine whether to go left or right.

• Don’t be too fussy about the details of the binary search.

• This problem might be pretty hard, so people will likely come for help.

Question 5 Lizard

There is a rectangular grid with R rows and C columns. In row r and column c, there is a stone
of height hrc, which holds arc lizards. Both hrc and arc are non-negative integers. If hrc is zero,
this denotes that there is no stone at (r, c) and hence arc is guaranteed to also be zero.

Each lizard can jump between two stones if they are separated a distance of at most d. In other
words, it can jump from a stone at (r1, c1) to a stone at (r2, c2) (which may be occupied by any
number of lizards) if

√
(r1 − r2)2 + (c1 − c2)2 ≤ d.

However, the stones are not stable, so whenever a lizard leaves a stone, the height of the stone is
decreased by 1. If the new height of the stone is zero, there is no more stone at at (r, c). Any
remaining lizards on this stone will drown, and lizards will no longer be able to jump onto this
stone.

We want to help as many lizards as possible to escape the grid. A lizard escapes if it can jump
between rocks, then take a jump of at most distance d to take them beyond the boundary of the
grid.

Design a polynomial time algorithm to find the maximum number of lizards that can escape from
the grid.

First solve the case where initially there is only one lizard. Then generalise to allow several
lizards all starting on the same stone, and finally to the full problem. Note that each initial
height hrc provides a constraint on the number of lizards which can use (r.e. jump from) that
stone.

Construct a flow network with a (super-)source s, a (super-)sink t, and for each stone (r, c),
two vertices inr,c and outr,c.

• For each stone (r, c), place an edge from the source to inr,c with capacity ar,c, repre-
senting the lizards starting at this stone.

• For each stone (r, c), place an edge from inr,c to outr,c with capacity hr,c, representing

4

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

the capacity of this stone (r.e. the number of lizards which can depart it).

• For each pair of distinct stones (r, c) and (r′, c′) (of which there are O((RC)2)), place an
edge of infinite capacity from outr,c to inr,c, representing any number of lizards moving
from (r, c) to (r′, c′).

• For each stone (r, c) within d of the boundary (r.e. r ≤ d, (R + 1) − r ≤ d, c ≤ d or
(C + 1) − c ≤ d), place an edge of infinite capacity from outr,c to t, representing any
number of lizards escaping from this stone.

Each unit of flow in this network represents one of the starting lizards jumping between
stones without drowning and eventually escaping the grid, so the maximum number of lizards
escaping is the size of the maximum flow. We therefore find the answer by running the
Edmonds-Karp algorithm on this flow network.

There are 2rc+2 = O(RC) vertices and RC+RC+O((RC)2)+O((RC)2) = O((RC)2) edges
in this flow network. Therefore constructing the graph takes O((RC)2) time, and running
Edmonds-Karp takes O((RC)5) time. The length of the input is at least RC, so the algorithm
runs in polynomial time.

• This problem is relatively routine, so feel free to spend a bit of time making sure they
have all the details of the flow network (e.g. super source and super sink, vertex capac-
ities, edge capacities) right.

Question 6 Digits

You are given a positive integer n and a decimal digit k. Your task is to count the number of
n-digit numbers (without leading zeros) in which the digit k appears an even number of times.
Note that we consider 0 to be an even 1-digit number.

Design a dynamic programming algorithm which solves this problem and runs in O(n) time.

1 Consider deciding the number one digit at a time. What state could we use?

2 Try a dp with the following states:

• even(i), the quantity of numbers with i decimal digits where k appears an even
number of times.

• odd(i), the quantity of numbers with i decimal digits where k appears an odd
number of times.

All numbers with i > 0 digits consist of a nonzero leading digit, then i− 1 more digits that
can be zero. We’ll count how many numbers have an even number of digits k and how many
have an odd number of digits k. We first deal with the case k ̸= 0, and then we will discuss
the modifications required when k = 0.

Subproblems: for 1 ≤ i ≤ n, let P (i) be the problem of determining even(i), the quantity
of numbers with i decimal digits where k appears an even number of times, and odd(i), the
quantity of numbers with i decimal digits where k appears an odd number of times.

Recurrence: for 1 < i < n, we have

even(i) = 9× even(i− 1) + odd(i− 1)

odd(i) = 9× odd(i− 1) + even(i− 1).

5

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

If the leading digit is not k, then the parity of digits k in the remaining i − 1 digits should
be maintained. If instead the leading digit is k, then the parity is reversed. There are ten
choices for the leading digit, namely k and the nine other digits. At the last step however, 0
is forbidden as the leading digit, so we have

even(n) = 8× even(n− 1) + odd(n− 1)

odd(n) = 8× odd(n− 1) + even(n− 1).

Base cases: we have
even(1) = 9 and odd(1) = 1,

since there is only one 1-digit number with an odd number of instances of digit k (namely k
itself), and the remaining nine have no instances of k.

The solution to P (i) depends on the solution to P (i−1), so we solve subproblems in increasing
order of i.

The final answer is simply even(n), the quantity of n-digit numbers without leading zeros
where digit k appears an even number of times.

There are n subproblems, each solved in constant time, so the overall time complexity is
O(n).

Special case: if k = 0, the final step of the recurrence is

even(i) = 9× even(i− 1)

odd(i) = 9× odd(i− 1)

since the leading digit must be nonzero.

Combinatorics based solutions are not accepted, as the question asks for a DP solution.

Question 7 Pairs

You are given an array A of n positive integers, each at most M . For each pair of distinct indices
1 ≤ i < j ≤ n, consider the corresponding sum A[i] +A[j].

Design an algorithm which determines the kth largest of these sums and runs in O(n log n logM)
time.

For example, suppose n = 4, k = 4 and the array elements are 2, 5, 3, 4. Going over pairs of distinct
indices, we encounter the corresponding sums 5, 6, 7, 7, 8, 9, so the correct answer is 7. Note that 7
appears twice in the list; it is both the third largest sum and the fourth largest sum.

For a given positive integer S, can you determine the number of pairs of indices with corre-
sponding sum greater than or equal to S in O(n log n) time?

We know that each pair must have sum at most 2M .

For some 0 < S ≤ 2M , we can count the number of pairs with sum at least S in O(n log n)
as above. Then:

[A] If the number of such pairs is less than k, the answer must be strictly larger than S.

[B] If the number of pairs is greater than or equal to k, the answer must be smaller than
or equal to S.

6

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

We want to find the largest S such that the number of pairs equal or larger than S is not less
than k. The above criterion allows us to find this value of S by binary search.

This binary search requires O(logM) steps, each of which takes O(n log n), so the overall
runtime is O(n log n logM).

Note the termination condition we used; other choices might be incorrect. In particular
multiple pairs could have the same size, so finding an S with exactly k− 1 larger pairs won’t
work. This should only receive a minor penalty.

Question 8 Tasks

Alice has n tasks to do, the ith of which is due by the day di. She can work on one task each
day, starting from day 1, and each task takes one day to complete. Morever, Alice is a severe
procrastinator and wants to accomplish every task as close as possible to its due date. If Alice
finishes the ith task on day j, her rage will increase by di − j.

Design an O(n log n) algorithm that determines whether all tasks can be completed by their dead-
lines, and if so, outputs the minimum total rage that Alice can accumulate.

1 Suggest that they initially just think about whether it is possible or not (ignore the
rage).

2 “If di < dj , is it true that we should always complete task i before task j”. The answer
to this is that while we don’t necessarily need to complete i before j, doing so will never
make a solution worse (using an exchange argument proof). This strongly suggests that
we should sort the tasks by d.

Firstly, sort the tasks by their due date in descending order. Then, for each task, (greedily)
choose the latest day available that isn’t after the due date. This can be done by maintaining
a variable for the earliest day that has a task, then assigning the task to the day before that,
if it occurs before the due date, or the due date otherwise. If we attempt to assign to day 0
or earlier, then report that Alice cannot complete all tasks on time.

The total rage can be calculated either incrementally while we determine which day each task
is done, or afterwards if the date each task was completed was recorded in an array.

The initial sort takes O(n log n), and the subsequent greedy assignment takes O(n) (with
each task taking exactly O(1) time), so the overall time complexity is O(n log n).

Proof of correctness:

There are two aspects of our algorithm that we need to prove to show that it is correct:

[A] it correctly determines whether all tasks can be completed before their due date, and

[B] if so, it produces the minimum possible total rage.

If there no valid scheduling of tasks exists, then we obviously won’t be able to find one. Oth-
erwise, a valid scheduling must exist. We’ll show that we can transform any valid scheduling
into the one produced by our algorithm without increasing total rage.

Firstly, we can permute which task is done on which day so that if task i is scheduled before
task j, then di ≤ dj . This is true because if di > dj for any two tasks but i is scheduled
before j, then swapping those two will still give a valid schedule.

Additionally, we can further permute it so that the relative order of tasks is identical, since
tasks with the same due date can be swapped without changing the total rage or validity of
a schedule.

7

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

Now, our algorithm will always schedule tasks on the latest day possible under this order-
ing. We can then repeatedly move individual tasks back a day until we obtain the schedule
produced by our algorithm. Doing so can only decrease total rage.

This means that our algorithm will always find a schedule if one exists, and the one it finds
will always have minimum total rage.

Iterating over days, from the largest due date down to zero, would exceed the required time
complexity. This alternative approach would take O(n log n+max di), which isn’t O(n log n)
as di is unbounded.

Question 9 Minimum

Assume that you are given an n × n table; each cell of the table contains a distinct number. A
cell is a local minimum if the number it contains is smaller than the numbers contained in all
neighbouring squares which share an edge with that cell. Thus, each of the four corner squares
has only two neighbours sharing an edge; 4(n− 2) non corner squares along the edges of the table
have three neighbouring squares and all internal squares have four neighbouring squares. You can
only ask queries which, given numbers i and j, where 1 ≤ i, j ≤ n, obtain the value in the cell
(i, j).

Design an algorithm which finds a local minimum and makes only O(n) many queries.

What’s a naive solution to find the local minimum without explicitly querying every cell in
order?

Intuition: We know that since all numbers are distinct, a local minimum has to occur within
the grid. And we can get to a local minimum by following squares that are neighbours of the
current cell that has a smaller value than the current cell.

Solution: Firstly, we query the middle-most 2 columns and the middle-most 2 rows and get
the smallest value of all the cells that we have queried. Without loss of generality, we assume
the smallest value, s, is in the bottom left quadrant. Since every number in the row above
and the column to its right are bigger than s, if we were to get to the local minimum by
following neighbours of s that are less than s, we know that we will never leave the bottom
left quadrant and go into any other quadrant. Therefore, a local minimum has to exist in the
bottom left quadrant, reducing our search space by a factor of 4.

Time complexity: Reducing an n × n search space by a factor of 4 requires 4n − 4 queries,
and 4n− 4 comparisions to find the smallest element. Therefore, the overall time complexity
is

(8n− 8) +
8n− 8

4
+

8n− 8

42
+ · · · = O(n).

Question 10 Aleks

Aleks received an offer from UNSW and he wants to graduate as soon as possible. His program
requires him to complete n courses in an order of his choice. The courses are labelled 1, 2, . . . , n,
where course i takes ti weeks to complete. Aleks gives you these values in an array A.

However, some pairs of courses overlap. If courses i and j overlap, then a student who has already
completed either course can complete the other in a number of weeks less than both ti and tj . Aleks
has produced another array B with m entries. Each entry consists of an unordered pair of distinct
courses which overlap (say p = {i, j}), as well as the number of weeks tp required to complete

8

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

either course if the other has already been completed. For each such pair, you are guaranteed that
tp < min(ti, tj).

Design an O((n+m) log(n+m)) time algorithm that finds the minimum number of weeks required
to complete all n courses.

Construct a graph where each course is represented by a vertex, and each pair of overlapping
courses is represented by an edge. How can you account for the times ti and t{i,j}?

For each i, the number of weeks taken to complete course i will either depend on one other
course j (in which case t{i,j} weeks are required), or no course (ti weeks). We can simplify
this by introducing a new course numbered 0 that takes zero time and represents “no course”,
as well as n extra overlaps t{0,k} = tk for k = 1, . . . , n. This allows us to begin with course
0 and henceforth only consider times arising from an overlap, rather than the direct cost of
doing any course.

Construct a graph G with n+1 vertices and m+n undirected edges. The vertices are labelled
from 0 to n, with each corresponding to a course. Each edge e = {i, j} corresponds to a pair
of overlapping courses and has weight t{i,j}.

Claim: For any given order of courses, the number of weeks taken to do all courses is the
total weight of some spanning tree of G.

Proof: If the number of weeks taken to complete course i depends on its overlap with course
j (potentially 0), then select the edge between i and j. Let the subgraph formed by these
selected edges be H. Now H has n edges, as courses 1 to n were completed. But H is also
acyclic as there cannot be a cycle of dependencies; later courses depend on earlier courses.
Therefore H is a spanning tree.

Clearly, the minimum number of weeks is achieved by the minimum spanning tree, which can
be found using Kruskal’s algorithm, implemented with the Union-Find data structure.a

We can also recover a valid ordering of courses from the minimum spanning tree by doing
a DFS or BFS starting at node 0, though this isn’t necessary to obtain the minimum time
needed.

Our adjusted graph will have m + n edges and n + 1 vertices, so it takes O(n +m) time to
construct an adjacency list representation of the graph. Kruskal’s algorithm then finds the
minimum spanning tree in O(|E| log |E|) = O((n+m) log(n+m)) time, so the overall time
complexity of our algorithm is also O((n+m) log(n+m)).

aPrim’s algorithm is also acceptable, using an augmented heap.

Question 11 Knights

There is a n×n chess board in front of you, and an infinite supply of knights to place on it. Some
squares are known to be damaged, meaning you cannot place any knights on them. The rest of the
squares are undamaged, and you can place at most one knight on each undamaged square.

As per standard chess rules, two knights are said to attack each other if the distance between
the two knights is

√
5 units. Design a polynomial time algorithm which determines the maximum

number of knights that can be placed on undamaged squares such that no two knights attack each
other.

Consider the graph formed by interpreting squares as vertices and interpreting pairs of squares

9

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

from which two knights can attack each other as edges. What special property does this graph
have?

First, separate the grid into two parts, the ones which are white and the ones which are black.
Clearly if two knights attack each other, they are in opposite parts of the grid. We need to
find the maximum independent set of vertices (one in which no two vertices in the set are
adjacent) of the resultant bipartite graph.

Construct a flow network with the following:

• A vertex for each undamaged square in the grid.

• An edge with capacity 1 from a white undamaged square to a black undamaged square,
for each pair of undamaged squares such that two knights placed on them would attack
each other.

• A supersource, from which there is an edge of capacity 1 to each white square.

• A supersink, to which there is an edge of capacity 1 from each black square.

Run the Edmonds-Karp algorithm on this graph to obtain f , the number of vertices in the
minimum vertex cover.

The overall time complexity is polynomial, since constructing the graph and the Edmonds-
Karp algorithm both take polynomial time.

• The proofs in the final paragraph are tricky, and the solution doesn’t include them.
Work with the student to fill in the details.

Question 12 And

You are given a non-negative integer m and a sequence A of length n, where each 0 ≤ A[i] < 2m

for all i. Your task is to find a subsequence B of maximum length such that B[i] &B[i + 1] ̸= 0
for all 1 ≤ i < n, where & denotes bitwise AND.

Design a dynamic programming algorithm which solves this problem and runs inO(mn) time.

1 First, let them know that they should begin by trying to find the length of the longest
sequence. Once they have a method to find the length of the longest sequence, then
they should try to find the sequence itself.

2 Ask them to solve it in O(n2m). The solution is to have dp(i) be the longest subarray
ending at index i. Note that dp(i) = maxj<i where B[i]&B[j] ̸= 0 dp(j) + 1, which can be
found in O(nm), giving an overall solution of O(n2m).

3 Once they have solved the problem in O(n2m), suggest that they try a solution with
O(nm) states.

Note first that each A[i] can be written as an m-bit number, potentially with leading zeros.

Subproblems: For 1 ≤ i ≤ n, let P (i) be the problem of determining opt(i), the length
of the longest valid subsequence of A[1..i] ending at A[i] and pred(i), the index in A of the
penultimate entry in such a subsequence. Also, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, let Q(i, j)
be the problem of determining f(i, j), the length of the longest valid subsequence of A[1..i]
where the jth bita of the last selected element is 1, and g(i, j), the index in A of the last
entry in such a subsequence.

10

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

Recurrence: For i > 1, let

j∗ = argmax
j

{f(i− 1, j) | the jth bit of A[i] is 1}.

If A[i] is the last entry of a valid subsequence, it must have a bit in common with the
penultimate entry of the subsequence. There is no other constraint, so we pick the bit j∗

which allows A[i] to extend a valid subsequence of maximum length. Then

opt(i) = f(i− 1, j∗) + 1

and
pred(i) = g(i− 1, j∗).

Note that if A[i] is zero, then j∗ is undefined, so we set opt(i) = 1 and pred(i) is undefined.

Also, for i > 1 and all 1 ≤ j ≤ m,

f(i, j) =

{
opt(i) if the jth bit of A[i] is 1

f(i− 1, j) if the jth bit of A[i] is 0

with g(i, j) = i in the first case and g(i, j) = g(i − 1, j) in the second case. Clearly, if A[i]
has a 0 in bit j, then we should refer to the solution of Q(i, j). However, if A[i] has a 1 in
bit j, it is in fact the best end index available. In this case, any solution to Q(i, j) ending at
A[k] where k < i is suboptimal, since appending A[i] yields a subsequence which is:

• longer by one,

• valid, since A[k] and A[i] both have 1 in the jth bit, so A[k] &A[i] is nonzero, and

• also has a 1 in the jth bit of its last entry.

Therefore we simply take the longest subsequence ending at A[i], which is solved in P (i).

Base cases: We have opt(1) = 1 and pred(1) undefined, since the first entry alone is a valid
subsequence with no penultimate element. For 1 ≤ j ≤ m,

f(1, j) =

{
1 if the jth bit of A[1] is 1

0 if the jth bit of A[1] is 0

with g(i, j) = 1 in the first case and undefined otherwise, since the only candidate subse-
quences are either the sole element A[1] or the empty subsequence.

Since the solution to P (i) depends on the solutions to Q(i− 1, ·) and the solution to Q(i, j)
depends on the solutions to P (i) and Q(i− 1, j), we solve subproblems by increasing order of
i, at each stage solving P (i) and then all Q(i, j) in any order of j. The overall longest valid
subsequence must end at some entry A[i], so its length is given by

max
1≤i≤n

opt(i).

The index of the last entry in such a subsequence is

i∗ = argmax
i:1≤i≤n

opt(i),

and the rest of the subsequence is found by backtracking; the second last entry is pred(i∗),
the third last is pred(pred(i∗)), and so on.

11

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

There are n subproblems P (i), each solved in O(m) time, and nm subproblems Q(i, j), each
solved in constant time, so the overall complexity is O(nm).

a“jth bit” means jth least significant bit throughout this solution.

Note that to fully solve the problem they need to find the subsequence, not just its length.
However, finding the length is about 90% of the problem, so if they solve that they are very
close.

Also, watch out for incorrect solutions which inadvertently only find subarrays where all
elements have a bit in common.

Question 13 Bits

Given a 32 bit unsigned number, count the number of 1 bits it contains in no more than 20
operations. You are allowed to use any arithmetic operation (addition, subtraction, multiplica-
tion, division, modulus) and any logical operation provided in C (bit shift, AND, OR, NOT,
XOR).

You are allowed to use variable assignment to store partial calculations, which is not counted as
an operation. However, you cannot use the following: control flow (e.g. if, for, while), functions,
arrays, typecasting, a variable called potato.

The only operations you need are addition, bit shift and AND.

This is a divide and conquer problem, how can we solve the problem in batches?

Let the ith bit of A be denoted as Ai. Then we want

ans = A0 +A1 + · · ·+A63.

Applying divide and conquer, we want

ans = B0 +B1 + · · ·+B31.

where B0 = A0 +A1, B1 = A2 +A3, · · · and B31 = A62 +A63

Doing this through code looks like

B = ((A & 0b10101010101010101010101010101010) >> 1) +

(A & 0b01010101010101010101010101010101);

Now every 2 bit chunk of B stores the bitcount of the corresponding 2 bit chunk of A.

Similarly, we want
ans = C0 + C1 + · · ·+ C15

where C0 = B0 +B1, C1 = B2 +B3, · · · and C15 = B30 +B31

Doing this through code looks like

C = ((B & 0b11001100110011001100110011001100) >> 2) +

(B & 0b00110011001100110011001100110011);

Hence, for a total of 20 operation, a solution is:

12

CPMSoc x CSESoc COMP3121 Revision Session 22T3 — Problems and Solutions

B = ((A & 0b10101010101010101010101010101010) >> 1) +

(A & 0b01010101010101010101010101010101);

C = ((B & 0b11001100110011001100110011001100) >> 2) +

(B & 0b00110011001100110011001100110011);

D = ((C & 0b11110000111100001111000011110000) >> 4) +

(C & 0b00001111000011110000111100001111);

E = ((D & 0b11111111000000001111111100000000) >> 8) +

(D & 0b00000000111111110000000011111111);

F = ((E & 0b11111111111111110000000000000000) >> 16) +

(E & 0b00000000000000001111111111111111);

Note that students should demonstrate this concept but they do not need to provide this
code exactly.

Further optimisations: The AND on the second last line is redundant, removing this takes
us to 19 operations.

Exercise to the reader - use only 14 queries!

13

