

What are Graphs?

e A Graph is a Data Structure that represents relation among entities
e Graph: G(V, BE), where V is the set of Vertices and E is the set of Edges

Z’/’"‘ Edge

s

Vertices

> ©

Ways to Store/Represent a Graph

1] . 2 »Id‘f
. o E__,|1 ——»l#‘—'—l"-a."' ED 1 0 1 0
' : , 2 1 0 1 1 0
3 _ a
’o 4_.|E _.|5M \iu1uu1
2 il HELHED] e
5__'ltI __'|3“F =Rl | o | ¢ | 1| 1] o
Undirected Graph i

Adjacency List Representation Adjacency Matrix Representation

Graph Terminology

O

©

D
Undirected Graph

O

©

B

D

Unweighted Graph

®

(B)

©-

D)

Directed Graph

Weighted Graph

®

©

©

Sparse Graph

Acyclic Graph

Complete Graph (Dense)

O—

Cyclic Graph

Graph Traversal Algorithms

— Breadth First Search (BFS)

e Visits nodes layer-by-layer starting from the src

e Used to find shortest path
e Time complexity: O(V + E)

— Depth First Search (DFS)
e Visits nodes till as far as possible until all neighbours of a node are exhausted
e Concise recursive implementation

e Time complexity: O(V + E)

void bfs(Graph g, Vertex src) {
Queue g = QueueNew();
int %*vis = calloc(GraphNumVertices(g), sizeof(bool));

QueueEnqueue(q, src);
vis[src] = true;

while (QueueSize(qg) > 0) {
Vertex v = QueueDequeue(q);

struct adjNode *curr = g—edges[v];

while (curr = NULL) {
Vertex w = curr—v;
if (lvis[w]) {
QueueEnqueue(q, w);
vis[w] = true;
}
curr = curr—next;
}
}

free(vis);
QueueFree(q);

}

void dfs(Graph g, Vertex src) {
Stack s = StackNew();
int *vis = calloc(GraphNumVertices(g), sizeof(bool));

StackPush(s, src);
vis[src] = true;

while (StackSize(s) > 0) {
Vertex v = StackPop(s);

struct adjNode xcurr = g—edges[v];

while (curr %= NULL) {
Vertex w = curr—v;
if (lvis[w]) {
StackPush(s, w);
vis[w] = true;
}
curr = curr—next;
}
}

free(vis);
StackFree(s);
}

HOW NORMAL PEOPLE SEE TREES

What are Trees?

A tree is a type of graph

Tree Terminology

Root

Level O
4 ’
b “

Level 1
(; Level 2
3
T b 2

] h‘ 1 ’

\ . ‘. p

i ~ v Level 3

L 8 1‘1 h""-.j.,,r Iy
- 1 N
'h"-\,..._ l'l“ Slhllngs
L
Child Node

Leaf Nodes

Properties of Trees

e Have n nodes and n - 1 edges

e Can be hierarchical like a family tree

e Connected and acuyclic

e Bipartite

e Exactly one path between any pair of nodes
e Adding any edge creates a cycle

e Similarly, removing any edge disconnects the tree

10

Problem: Num of Islands

https.//leetcode.com/problems/number-ot-islands/description/

11

https://leetcode.com/problems/number-of-islands/description/

int numIslands(vector<vector<char>>& grid) {
int n = grid.size(), m = grid[0].size(), islands =
for (int 1 = 0; 1 < n; i+) {
for (int j = 0; j < m; j+) {
if (grid[il[j] = '1") {
1slands++;
dfs(grid, 1, Jj);

}
}

return 1slands;

}

void dfs(vector<vector<char>>& grid, int i, int j) {
int n = grid.size(), m = grid[0].size();
if(i<o ||l i=2n|l j<o]|l j=m]|l grid[il[j] = '0') return;
grid[i][j] = '0";
dfs(grid, 1 - 1, j);
dfs(grid, i + 1, j);
dfs(grid, i, j - 1);
dfs(grid, i, j + 1);

