
Programming Workshop 4
Dynamic Programming II

Bharat, Yiheng, Miles

Table of contents

1 One Dimensional DP
Frog Jump
Longest Increasing Subsequence

2 Two Dimensional DP
Longest Common Subsequence
0/1 Knapsack
Subset Sum

3 Thanks for coming!

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 1 / 22

Frog Jump
Source: https://atcoder.jp/contests/dp/tasks/dp_a.

Consider a frog jumping along a sequence of n stones. Stone i has a height of hi.
The cost of jumping between two stones is the difference in heights between the
stones.
The frog starts on stone 1. On each turn, they can jump to either the next stone or
the stone after the next stone.
What is the minimum cost to jump to the last stone?

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 2 / 22

https://atcoder.jp/contests/dp/tasks/dp_a

Frog Jump
Let DP[i] = the minimum cost to get from stone 1 to stone i.

There are two ways we could have arrived at stone i: from stone i− 1 or from stone
i− 2.
Therefore, we can compute
DP[i] = min(DP[i− 1] + |hi − hi−1|,DP[i− 2] + |hi − hi−2|).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 4 / 22

Frog Jump
Let DP[i] = the minimum cost to get from stone 1 to stone i.
There are two ways we could have arrived at stone i: from stone i− 1 or from stone
i− 2.

Therefore, we can compute
DP[i] = min(DP[i− 1] + |hi − hi−1|,DP[i− 2] + |hi − hi−2|).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 4 / 22

Frog Jump
Let DP[i] = the minimum cost to get from stone 1 to stone i.
There are two ways we could have arrived at stone i: from stone i− 1 or from stone
i− 2.
Therefore, we can compute
DP[i] = min(DP[i− 1] + |hi − hi−1|,DP[i− 2] + |hi − hi−2|).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 4 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Then we compute the DP:

0 2 1

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Then we compute the DP:

0 2 1
0 2 1 2

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Then we compute the DP:

0 2 1
0 2 1 2
0 2 1 2 2

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Then we compute the DP:

0 2 1
0 2 1 2
0 2 1 2 2
0 2 1 2 2 6

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump
Consider the input where n = 6 and the heights are:

3 1 4 1 5 9

We initialise the DP table:

0 2

Then we compute the DP:

0 2 1
0 2 1 2
0 2 1 2 2
0 2 1 2 2 6

Thus, the answer is 6.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 5 / 22

Frog Jump Implementation
int cache[MAX_N];

int best(int n, int *h) {

cache[0] = 0;

cache[1] = abs(h[1] - h[0]);

for (int i=2; i<n; i++) {

cache[i] = min(cache[i-1] + abs(h[i] - h[i-1]),

cache[i-2] + abs(h[i] - h[i-2]));

}

return cache[n-1];

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 6 / 22

Frog Jump Implementation
int h[MAX_N];

bool seen[MAX_N];

int cache[MAX_N];

int dp(int i) {

if (i==0) return 0;

if (i==1) return abs(h[i] - h[i-1]);

if (seen[i]) return cache[i];

seen[i] = true;

return cache[i] = min(dp(i-1) + abs(h[i] - h[i-1]),

dp(i-2) + abs(h[i] - h[i-2]));

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 7 / 22

Frog Jump
Extension: what if we could jump more than 2 steps at once? Assume the frog can jump
between 1 and k steps each turn. How would this change the DP? What would be the
new time complexity?

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 8 / 22

Longest Increasing Subsequence
Given an array a of length n, find the longest subsequence of the array such that the
elements in the subsequence are strictly increasing.

Let li denote the longest increasing subsequence of the first i elements of the array
that includes ai.
Assuming we know l1, l2, ..., li−1, to calculate li, we can iterate over all indices
0 ≤ j < i such that aj < ai, and try extending the sequence ending at j by adding i.
The maximum of these will be the value of li.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 9 / 22

Longest Increasing Subsequence
Given an array a of length n, find the longest subsequence of the array such that the
elements in the subsequence are strictly increasing.
Let li denote the longest increasing subsequence of the first i elements of the array
that includes ai.

Assuming we know l1, l2, ..., li−1, to calculate li, we can iterate over all indices
0 ≤ j < i such that aj < ai, and try extending the sequence ending at j by adding i.
The maximum of these will be the value of li.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 9 / 22

Longest Increasing Subsequence
Given an array a of length n, find the longest subsequence of the array such that the
elements in the subsequence are strictly increasing.
Let li denote the longest increasing subsequence of the first i elements of the array
that includes ai.
Assuming we know l1, l2, ..., li−1, to calculate li, we can iterate over all indices
0 ≤ j < i such that aj < ai, and try extending the sequence ending at j by adding i.
The maximum of these will be the value of li.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 9 / 22

Longest Increasing Subsequence
By computing this naively, we end up with a time complexity of O(n2).

Extension: if we use a range tree or sorted stack, we can calculate each step in
O(log(N)), resulting in an overall time complexity of O(N log(N)).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 10 / 22

Longest Increasing Subsequence
By computing this naively, we end up with a time complexity of O(n2).
Extension: if we use a range tree or sorted stack, we can calculate each step in
O(log(N)), resulting in an overall time complexity of O(N log(N)).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 10 / 22

LIS Implementation
int cache[MAX_N];

int lis(int *data, int n) {

for (int i=0; i<N; i++) {

int best = 1;

for (int j=0; j<i; j++) {

if (data[j] < data[i]) best = max(best, cache[j]+1);

}

cache[i] = best;

}

int best = 0;

for (int i=0; i<n; ++i) best = max(best, cache[i]);

return best;

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 11 / 22

Longest Common Subsequence
Given two arrays a and b, find the longest sequence that is a subsequence of both a
and b.

Currently, we have only considered problems where our DP state is one-dimensional.
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 12 / 22

Longest Common Subsequence
Given two arrays a and b, find the longest sequence that is a subsequence of both a
and b.
Currently, we have only considered problems where our DP state is one-dimensional.
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 12 / 22

Calculating the DP Recurrence
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.

Two cases:
ai = bj , so DP[i][j] = 1 + DP[i− 1][j − 1].
ai ̸= bj , so DP[i][j] = max(DP[i− 1][j],DP[i][j − 1]).

The recurrence is O(1), and there are O(NM) states, so our total complexity is
O(NM).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 13 / 22

Calculating the DP Recurrence
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.
Two cases:

ai = bj , so DP[i][j] = 1 + DP[i− 1][j − 1].
ai ̸= bj , so DP[i][j] = max(DP[i− 1][j],DP[i][j − 1]).

The recurrence is O(1), and there are O(NM) states, so our total complexity is
O(NM).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 13 / 22

Calculating the DP Recurrence
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.
Two cases:

ai = bj , so DP[i][j] = 1 + DP[i− 1][j − 1].

ai ̸= bj , so DP[i][j] = max(DP[i− 1][j],DP[i][j − 1]).

The recurrence is O(1), and there are O(NM) states, so our total complexity is
O(NM).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 13 / 22

Calculating the DP Recurrence
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.
Two cases:

ai = bj , so DP[i][j] = 1 + DP[i− 1][j − 1].
ai ̸= bj , so DP[i][j] = max(DP[i− 1][j],DP[i][j − 1]).

The recurrence is O(1), and there are O(NM) states, so our total complexity is
O(NM).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 13 / 22

Calculating the DP Recurrence
Let’s define DP[i][j] to be the longest common subsequence of the first i elements of
a and the first j elements of b.
Two cases:

ai = bj , so DP[i][j] = 1 + DP[i− 1][j − 1].
ai ̸= bj , so DP[i][j] = max(DP[i− 1][j],DP[i][j − 1]).

The recurrence is O(1), and there are O(NM) states, so our total complexity is
O(NM).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 13 / 22

LCS Implementation
int data_a[MAX_N];

int data_b[MAX_M];

bool seen[MAX_N][MAX_M];

int cache[MAX_N][MAX_M];

int dp(int i, int j) {

if (i<0||j<0) return 0;

if (seen[i][j]) return cache[i][j];

seen[i][j] = true;

if (i==j) return cache[i][j] = 1+dp(i-1, j-1);

return cache[i][j] = max(dp(i-1, j), dp(i, j-1));

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 14 / 22

0/1 Knapsack
You are robbing a house with N items, of which you select a subset to steal. Each
item has a value vi and a volume wi. Given that the sum of the volumes of the items
you steal cannot exceed V (the volume of your knapsack), what is the maximum sum
of the values of the items that you can steal?
Can we use a greedy algorithm?

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 15 / 22

0/1 Knapsack
Define DP[i][j] as the best value we can get from the first i items without exceeding
the volume j.

For each item, we either steal it or ignore it.
Thus, DP[i][j] = max(DP[i− 1][j],DP[i− 1][j − wi]).
Remember to consider base cases!
Our total time complexity becomes O(NV).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 16 / 22

0/1 Knapsack
Define DP[i][j] as the best value we can get from the first i items without exceeding
the volume j.
For each item, we either steal it or ignore it.

Thus, DP[i][j] = max(DP[i− 1][j],DP[i− 1][j − wi]).
Remember to consider base cases!
Our total time complexity becomes O(NV).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 16 / 22

0/1 Knapsack
Define DP[i][j] as the best value we can get from the first i items without exceeding
the volume j.
For each item, we either steal it or ignore it.
Thus, DP[i][j] = max(DP[i− 1][j],DP[i− 1][j − wi]).
Remember to consider base cases!
Our total time complexity becomes O(NV).

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 16 / 22

0/1 Knapsack Implementation
bool seen[N][V+1];

int cache[N][V+1];

int value[N];

int volume[N];

int dp(int i, int j) {

if (i==-1) return 0;

if (j<0) return INT_MIN;

if (seen[i][j]) return cache[i][j];

seen[i][j] = true;

return cache[i][j] = std::max(dp(i-1,j), value[i] + dp(i-1, j-volume[i]));

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 17 / 22

Knapsack
Challenge: how can the DP be modified if there are unlimited copies of every object?

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 18 / 22

Subset Sum
Given an array a of positive integers with length n and a positive integer k, can we
select a subset of a with a sum exactly equal to k?
This is actually very similar to knapsack! The only difference is that we cannot leave
empty space in our knapsack

By slightly modifying our knapsack algorithm, we can solve this in O(nk).
This is often considered to be exponential time, because the size of the input is
O(log(k)), so O(k) is exponential in the size of the input. Knapsack and Subset Sum
are both NP-hard, so it is conjectured that there is no better-than-exponential
algorithm to solve them.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 19 / 22

Subset Sum
Given an array a of positive integers with length n and a positive integer k, can we
select a subset of a with a sum exactly equal to k?
This is actually very similar to knapsack! The only difference is that we cannot leave
empty space in our knapsack
By slightly modifying our knapsack algorithm, we can solve this in O(nk).
This is often considered to be exponential time, because the size of the input is
O(log(k)), so O(k) is exponential in the size of the input. Knapsack and Subset Sum
are both NP-hard, so it is conjectured that there is no better-than-exponential
algorithm to solve them.

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 19 / 22

Subset Sum Implementation
Note the difference between the two boolean arrays seen and cache. seen stores
whether we have calculated a particular result, whereas cache stores whether we can fill
our knapsack perfectly at that point.

bool seen[N][K+1];

bool cache[N][K+1];

int volume[N];

bool dp(int i, int j) {

if (j==0) return true;

if (i==-1) return false;

if (j<0) return false;

if (seen[i][j]) return cache[i][j];

seen[i][j] = true;

return cache[i][j] = dp(i-1,j) || dp(i-1, j-volume[i]);

}

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 20 / 22

Attendance form :D

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 21 / 22

Further events
Please join us for:

Computer Pizza Making Situated Online Contest (tomorrow!)
DP III Workshop (11 April)
Poker Night (11 April)

Bharat, Yiheng, Miles Programming Workshop 4 4 April 2025 22 / 22

	One Dimensional DP
	Frog Jump
	Longest Increasing Subsequence

	Two Dimensional DP
	Longest Common Subsequence
	0/1 Knapsack
	Subset Sum

	Thanks for coming!

