
Intro to dynamic Programming

Yiheng You, Bharat Singla



Attendance



motivating problem
The fibonacci numbers are defined fib(0)=1, fib(1)=1, and 
fib(n)=fib(n-1)+fib(n-2).

e.g. 1,1,2,3,5,8,11,...

Given x, output the x-th fibonacci number.



Recursion?
Implement the recursive 
formula straight-forward.



Recursion? int fib(int n) {

if (n <= 1) return 1;

return fib(n - 1) + fib(n - 2);

}Implement the recursive 
formula straight-forward.



So what’s the issue?
Try to run for a number x > 30.

The program can’t finish running…



Let’s see what’s happening



Let’s see what’s happening



Let’s see what’s happening



Let’s see what’s happening

Worst case we’re 
calculating 2^x 
states!

O(2^x)



MEMOISATION!
Let’s not recalculate the 

values we’ve already 
calculated before.



MEMOISATION!

int dp[MXX];

bool seen[MXX];

int fib(int n) {

if (n <= 1) return 1;

if (seen[n]) return dp[n];

dp[n] = fib(n - 1) + fib(n - 2);

return dp[n];

}

Let’s not recalculate the 
values we’ve already 
calculated before.



Why is this better?
We only calculate each state from 0~x once. O(x)

This new method will now easily pass for much larger values 
of x. Yay!



What insight does this give to DP?
● Similar sub-problems
● Similar sub-structures

We break the original problem up into smaller, manageable 
problems that we combine!



Coin Change problem
Given some denomination of coins, and a value, what is the 
minimum number of coins to make that value?

Example:

Value: 12

Denominations: 1, 2, 5



Idea
Let’s always take the largest denomination coin that we can 
take, then move on to the next.

Example:

Value: 12

Denominations: 1, 2, 5

Solution: 3 coins (5, 5, 2)



Does this always 
work?



No
Consider:

Value: 11

Denominations: 1, 5, 7



No
Consider:

Value: 11

Denominations: 1, 5, 7

If we took greedily from biggest denomination: 5 coins (7, 
1, 1, 1, 1)

Optimal solution: 3 coins (5, 5, 1)



Any Other ideas?



Let’s think with DP
If we can’t solve the problem for value V, let’s solve it 
for value V-c[i], where c[i] is the denomination for each 
coin.

A recursive relation is being generated here!



Let’s think with DP
If we can’t solve the problem for value V, let’s solve it 
for value V-c[i], where c[i] is the denomination for each 
coin.

A recursive relation is being generated here!

dp[V] = min{dp[V - c[i]] + 1}



When do we stop?
dp[0] = 0

It requires 0 coins to form a total value of 0!



Top Down DP
We recursively call “states” that may have not been 
calculated yet.



Botton Up Dp
We build our dp calculations upwards with the states that 
have already been calculated.

Let’s see this in action with the Coin Change Problem!



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 INF INF INF INF INF INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 INF INF INF INF INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 INF INF INF INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 INF INF INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 INF INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 INF INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 INF INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 1 INF INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 1 2 INF INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 1 2 3 INF INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 1 2 3 2 INF



Coin Change Problem Visualisation
Denominations: 1, 5, 7

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 1 2 1 2 3 2 3



Thanks for attending!
Attendance ------>


