
2521 Graph Theory

CPMSoc x CSESoc

Attendance form :D

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 1 / 24

Representation of graphs

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 2 / 24

Breadth-First Search (BFS)
Concept:

Start from a node.
Visit all its neighbors.
Move to the next level neighbors.

Algorithm Steps:
1 Enqueue the starting node.
2 Dequeue a node, process it, and enqueue its unvisited neighbors.
3 Repeat until the queue is empty.

Data Structures:
Queue: To keep track of nodes to be explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for shortest path
reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 3 / 24

https://lh5.googleusercontent.com/JKY4V8OZEs5L68Mh2ZY5ZqiqGkaj8esWnTEUwEdygFQdRFowh7aCWpibaPRqkcR3SHBh2Q4Io856f2fAzM5Ae3nD2uLj7AEU3NnQfZ55E2ni0EzXceoVTJtHzqGlUhQ9-izy5Y0v1DK0xIQ4vUxs9Ds

Breadth-First Search (BFS)
Concept:

Start from a node.
Visit all its neighbors.
Move to the next level neighbors.

Algorithm Steps:
1 Enqueue the starting node.
2 Dequeue a node, process it, and enqueue its unvisited neighbors.
3 Repeat until the queue is empty.

Data Structures:
Queue: To keep track of nodes to be explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for shortest path
reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 3 / 24

https://lh5.googleusercontent.com/JKY4V8OZEs5L68Mh2ZY5ZqiqGkaj8esWnTEUwEdygFQdRFowh7aCWpibaPRqkcR3SHBh2Q4Io856f2fAzM5Ae3nD2uLj7AEU3NnQfZ55E2ni0EzXceoVTJtHzqGlUhQ9-izy5Y0v1DK0xIQ4vUxs9Ds

Breadth-First Search (BFS)
Concept:

Start from a node.
Visit all its neighbors.
Move to the next level neighbors.

Algorithm Steps:
1 Enqueue the starting node.
2 Dequeue a node, process it, and enqueue its unvisited neighbors.
3 Repeat until the queue is empty.

Data Structures:
Queue: To keep track of nodes to be explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for shortest path
reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 3 / 24

https://lh5.googleusercontent.com/JKY4V8OZEs5L68Mh2ZY5ZqiqGkaj8esWnTEUwEdygFQdRFowh7aCWpibaPRqkcR3SHBh2Q4Io856f2fAzM5Ae3nD2uLj7AEU3NnQfZ55E2ni0EzXceoVTJtHzqGlUhQ9-izy5Y0v1DK0xIQ4vUxs9Ds

Depth-First Search (DFS)
Concept:

Start from a node.
Explore as deep as possible before backtracking.

Algorithm Steps:
1 Push the starting node onto the stack (or call recursively).
2 Pop a node, process it, and push its unvisited neighbors.
3 Repeat until the stack is empty.

Data Structures:
Stack/Recursion: To keep track of nodes being explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for path reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 4 / 24

https://logicmojo.com/assets/dist/new_pages/images/dfs-explan.gif

Depth-First Search (DFS)
Concept:

Start from a node.
Explore as deep as possible before backtracking.

Algorithm Steps:
1 Push the starting node onto the stack (or call recursively).
2 Pop a node, process it, and push its unvisited neighbors.
3 Repeat until the stack is empty.

Data Structures:
Stack/Recursion: To keep track of nodes being explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for path reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 4 / 24

https://logicmojo.com/assets/dist/new_pages/images/dfs-explan.gif

Depth-First Search (DFS)
Concept:

Start from a node.
Explore as deep as possible before backtracking.

Algorithm Steps:
1 Push the starting node onto the stack (or call recursively).
2 Pop a node, process it, and push its unvisited neighbors.
3 Repeat until the stack is empty.

Data Structures:
Stack/Recursion: To keep track of nodes being explored.
Visited Array: To mark nodes as visited.
Predecessor Array: To store the path (optional, but useful for path reconstruction).

For more details, visit: GIF

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 4 / 24

https://logicmojo.com/assets/dist/new_pages/images/dfs-explan.gif

Time Complexities

BFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is enqueued and dequeued once, resulting in O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

DFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is pushed and popped from the stack (or recursively called) once, resulting in
O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 5 / 24

Time Complexities
BFS:

Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges

Reasoning:
Each vertex is enqueued and dequeued once, resulting in O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

DFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is pushed and popped from the stack (or recursively called) once, resulting in
O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 5 / 24

Time Complexities
BFS:

Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is enqueued and dequeued once, resulting in O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

DFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is pushed and popped from the stack (or recursively called) once, resulting in
O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 5 / 24

Time Complexities
BFS:

Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is enqueued and dequeued once, resulting in O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

DFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges

Reasoning:
Each vertex is pushed and popped from the stack (or recursively called) once, resulting in
O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 5 / 24

Time Complexities
BFS:

Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is enqueued and dequeued once, resulting in O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

DFS:
Time Complexity: O(V + E)
V = Number of vertices
E = Number of edges
Reasoning:

Each vertex is pushed and popped from the stack (or recursively called) once, resulting in
O(V) operations.
Each edge is considered once for each of its endpoints, resulting in O(E) operations.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 5 / 24

Strongly Connected Components
Problem: Given a directed graph, determine whether it is strongly connected.
Think About It:

How would you approach this problem using BFS or DFS?

Solution:
Step 1: Perform a DFS from any node. If any node is not reachable, the graph is not
strongly connected.
Step 2: Reverse the direction of all edges.
Step 3: Perform a DFS from the same starting node on the reversed graph. If any node
is not reachable, the graph is not strongly connected.
If all nodes are reachable in both the original and reversed graphs, the graph is strongly
connected.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 6 / 24

Strongly Connected Components
Problem: Given a directed graph, determine whether it is strongly connected.
Think About It:

How would you approach this problem using BFS or DFS?
Solution:

Step 1: Perform a DFS from any node. If any node is not reachable, the graph is not
strongly connected.
Step 2: Reverse the direction of all edges.
Step 3: Perform a DFS from the same starting node on the reversed graph. If any node
is not reachable, the graph is not strongly connected.
If all nodes are reachable in both the original and reversed graphs, the graph is strongly
connected.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 6 / 24

Dijkstra’s
1 Dijkstra’s algorithm is a SSSP (Single Source Shortest Path) algorithm that finds the

shortest path from a source node to all other nodes.

2 Dijkstra’s algorithm can be used in both a directed and undirected graph.
3 Dijkstra’s algorithm will not work if the edge weight is negative.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 7 / 24

Dijkstra’s
1 Dijkstra’s algorithm is a SSSP (Single Source Shortest Path) algorithm that finds the

shortest path from a source node to all other nodes.
2 Dijkstra’s algorithm can be used in both a directed and undirected graph.

3 Dijkstra’s algorithm will not work if the edge weight is negative.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 7 / 24

Dijkstra’s
1 Dijkstra’s algorithm is a SSSP (Single Source Shortest Path) algorithm that finds the

shortest path from a source node to all other nodes.
2 Dijkstra’s algorithm can be used in both a directed and undirected graph.
3 Dijkstra’s algorithm will not work if the edge weight is negative.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 7 / 24

Dijkstra’s
Some information we will need to keep when Dijkstra’s algorithm is being ran

1 Distance array - the distance array represents the current best-known path from the
source node to the current node. The array is initially all initialized to infinity (since we
have no information on the nodes until we explore them) except the source node
which has a distance of 0.

2 Predecessor Array - an array that keeps track of the node where we came from to
reach the current node.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 8 / 24

Dijkstra’s
Some information we will need to keep when Dijkstra’s algorithm is being ran

1 Distance array - the distance array represents the current best-known path from the
source node to the current node. The array is initially all initialized to infinity (since we
have no information on the nodes until we explore them) except the source node
which has a distance of 0.

2 Predecessor Array - an array that keeps track of the node where we came from to
reach the current node.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 8 / 24

Dijkstra’s
1 Maintain a set S of vertices for which the shortest path weight has been found,

initially empty. S is often represented by a boolean array.
2 For every vertex v, maintain a value dv which is the weight of the shortest known path

from s to v, i.e. the shortest path using only intermediate vertices in S. Initially ds = 0
and dv = ∞ for all other vertices.

3 At each stage, we add to S the vertex v ∈ V \ S which has the smallest dv value.
Record this value as the length of the shortest path from s to v, and update other dz
values as necessary.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 9 / 24

Dijkstra’s

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 10 / 24

Dijkstra’s

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 11 / 24

Dijkstra’s Complexity - Min Heap
For Dijkstra’s algorithm, in the worst-case scenario, we have to visit every single node
and traverse every single edge to find the shortest path.

For each edge traversal, we may also have to add the new into the min heap, taking
O(log V) time. Thus, the complexity of traversing all the edges is simply O(E log V).
For each node access from the min heap, this also takes O(log V) time, so the total
time complexity to access all nodes is O(V log V).
So the combined time complexity of Dijkstra’s using a min heap O((V + E) log V).
However, the time complexity of Dijkstra’s introduced in the course is O(E + V log V),
this is achieved through the use of the Fibonacci-heap.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 12 / 24

Dijkstra’s Complexity - Min Heap
For Dijkstra’s algorithm, in the worst-case scenario, we have to visit every single node
and traverse every single edge to find the shortest path.
For each edge traversal, we may also have to add the new into the min heap, taking
O(log V) time. Thus, the complexity of traversing all the edges is simply O(E log V).

For each node access from the min heap, this also takes O(log V) time, so the total
time complexity to access all nodes is O(V log V).
So the combined time complexity of Dijkstra’s using a min heap O((V + E) log V).
However, the time complexity of Dijkstra’s introduced in the course is O(E + V log V),
this is achieved through the use of the Fibonacci-heap.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 12 / 24

Dijkstra’s Complexity - Min Heap
For Dijkstra’s algorithm, in the worst-case scenario, we have to visit every single node
and traverse every single edge to find the shortest path.
For each edge traversal, we may also have to add the new into the min heap, taking
O(log V) time. Thus, the complexity of traversing all the edges is simply O(E log V).
For each node access from the min heap, this also takes O(log V) time, so the total
time complexity to access all nodes is O(V log V).

So the combined time complexity of Dijkstra’s using a min heap O((V + E) log V).
However, the time complexity of Dijkstra’s introduced in the course is O(E + V log V),
this is achieved through the use of the Fibonacci-heap.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 12 / 24

Dijkstra’s Complexity - Min Heap
For Dijkstra’s algorithm, in the worst-case scenario, we have to visit every single node
and traverse every single edge to find the shortest path.
For each edge traversal, we may also have to add the new into the min heap, taking
O(log V) time. Thus, the complexity of traversing all the edges is simply O(E log V).
For each node access from the min heap, this also takes O(log V) time, so the total
time complexity to access all nodes is O(V log V).
So the combined time complexity of Dijkstra’s using a min heap O((V + E) log V).

However, the time complexity of Dijkstra’s introduced in the course is O(E + V log V),
this is achieved through the use of the Fibonacci-heap.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 12 / 24

Dijkstra’s Complexity - Min Heap
For Dijkstra’s algorithm, in the worst-case scenario, we have to visit every single node
and traverse every single edge to find the shortest path.
For each edge traversal, we may also have to add the new into the min heap, taking
O(log V) time. Thus, the complexity of traversing all the edges is simply O(E log V).
For each node access from the min heap, this also takes O(log V) time, so the total
time complexity to access all nodes is O(V log V).
So the combined time complexity of Dijkstra’s using a min heap O((V + E) log V).
However, the time complexity of Dijkstra’s introduced in the course is O(E + V log V),
this is achieved through the use of the Fibonacci-heap.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 12 / 24

Kruskal’s Algorithm
Definition

A minimum spanning tree T of a connected graph G is a subgraph of G (with the
same set of vertices) which is a tree, and among all such trees it minimises the total
length of all edges in T .

Kruskal’s Algorithm
We sort the edges E in increasing order by weight. An edge e is added if its inclusion
does not introduce a cycle in the graph constructed thus far, or discarded otherwise.
The process terminates when the forest is connected, i.e. when n− 1 edges have
been added.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 13 / 24

Kruskal’s Algorithm
Definition

A minimum spanning tree T of a connected graph G is a subgraph of G (with the
same set of vertices) which is a tree, and among all such trees it minimises the total
length of all edges in T .

Kruskal’s Algorithm
We sort the edges E in increasing order by weight. An edge e is added if its inclusion
does not introduce a cycle in the graph constructed thus far, or discarded otherwise.
The process terminates when the forest is connected, i.e. when n− 1 edges have
been added.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 13 / 24

Kruskal’s Algorithm
To check whether an added edge belongs to a cycle, we can either naively check by
performing either a DFS traversal throughout the graph, which would yield a time
complexity of O(E logE + EV).
If we use the union-find data structure, we can detect whether an edge would create
a cycle in basically O(1), which means the final time complexity of Kruskal’s
algorithm is O(E logE).

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 14 / 24

Prim’s Algorithm

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 15 / 24

Prim’s Algorithm

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 16 / 24

Prim’s Algorithm

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 17 / 24

Prim’s Algorithm

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 18 / 24

Prim’s Algorithm

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 19 / 24

Question Time!
Suppose you’ve been tasked with powering the electricity network of Allabam. Given the
locations of the towns within Allabam and the sole power plant, you are to construct
powerlines to ensure that:

1 All towns are connected to the powerplant.
2 You incur the minimum cost possible, assuming that the cost of constructing a

powerline is proportional to its length.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 20 / 24

Question Time!
Suppose you’ve been tasked with powering the electricity network of Allabam. Given the
locations of the towns within Allabam and the sole power plant, you are to construct
powerlines to ensure that:

1 All towns are connected to the powerplant.
2 You incur the minimum cost possible, assuming that the cost of constructing a

powerline is proportional to its length.

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 20 / 24

Power Planning
Specifically, you are tasking with implementing the following function:

int planGrid(struct place cities[], int numCities, struct place powerPlant,

struct powerLine powerLines[])

struct place {

char name[MAX_PLACE_NAME + 1];

int x;

int y;

};

struct powerLine {

struct place p1;

struct place p2;

};

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 21 / 24

Sample Solution
int planGrid(struct place cities[], int numCities, struct place powerPlant,

struct powerLine powerLines[]) {

// numCities + 1 vertices (to account for power plant)

Graph powerGrid = GraphNew(numCities + 1);

// add all potential powerlines to Pq

Pq powerlines = addPowerlinesToPq(cities, numCities, powerPlant);

bool *visited = calloc(numCities + 1, sizeof(bool));
int totalEdges = 0;

while (totalEdges < numCities) {

struct edge currEdge = PqExtract(powerlines);

if (!pathExistsAlready(powerGrid, currEdge.v, currEdge.w, visited)) {

GraphInsertEdge(powerGrid, currEdge);

struct place place1 = getPlace(currEdge.v, cities, powerPlant, numCities);

struct place place2 = getPlace(currEdge.w, cities, powerPlant, numCities);

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 22 / 24

Sample Solution
struct powerLine installedLine = {

.p1 = place1,

.p2 = place2

};

powerLines[totalEdges++] = installedLine;

}

// reset visited array for next iteration

for (int i = 0; i < numCities + 1; i++) visited[i] = false;

}

free(visited);

PqFree(powerlines);

GraphFree(powerGrid);

return numCities;

}
CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 23 / 24

Further events
Please join us for:

Inter-uni programming competition next term!

CPMSoc x CSESoc 2521 Graph Theory Week 9 Friday T2 2024 24 / 24

Hashmaps

Kyle, Freddie, and Andrew

Why HashMaps, what’s the problem
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 1 / 16

Why HashMaps, what’s the problem
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 1 / 16

Why HashMaps, what’s the problem
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?

Bob the Builder, Yes We Can!
Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 1 / 16

Why HashMaps, what’s the problem
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 1 / 16

Why HashMaps, what’s the problem
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 1 / 16

Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 2 / 16

Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 2 / 16

Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!
Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 2 / 16

Hash Collisions
As we saw from your examples, we run into issues when distinct elements have the
same hash! This occurrence is called a ’hash collision’. If we do not do anything to
deal with this we will overwrite previous data.
So What can we do?

Separate Chaining
Linear Probing
Double Hashing

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 3 / 16

Hash Collisions
As we saw from your examples, we run into issues when distinct elements have the
same hash! This occurrence is called a ’hash collision’. If we do not do anything to
deal with this we will overwrite previous data.
So What can we do?
Separate Chaining
Linear Probing
Double Hashing

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 3 / 16

Separate Chaining
A natural idea is to chain these elements with identical hashes in a linked list:

We can chain these together very much like a simple linked list!

Can we do better?
If all elements hash to a single slot (in the worst case), we’ll have a O(n) search,
insert and delete ... so what was the point?!

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 4 / 16

Separate Chaining
A natural idea is to chain these elements with identical hashes in a linked list:

We can chain these together very much like a simple linked list!

Can we do better?
If all elements hash to a single slot (in the worst case), we’ll have a O(n) search,
insert and delete ... so what was the point?!

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 4 / 16

Separate Chaining
We can dynamically resize the underlying array when the total number of elements
inserted is greater than the size of the array.
This yields an amortized (averaged-out) complexity of O(1) for all operations on a
HashMap.
Note: This assumes that we have a hashing function that distributes evenly.

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 5 / 16

Linear Probing
Insertion:

If load factor exceeds threshold, dynamically resize
Hash key and if a collision occurs find the next empty slot

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 6 / 16

Linear Probing
Lookup:

Hash key and find the first slot that either contains the key or is empty
If the key is found we return the value, otherwise the key does not exist in the
hashmap

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 7 / 16

Linear Probing
Deletion:

The tombstone Method
The Backshift Method

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 8 / 16

Linear Probing
Deletion:

The tombstone Method

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 9 / 16

Linear Probing
Deletion:

The Backshift Method

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 10 / 16

Linear Probing
Deletion:

The Backshift Method

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 11 / 16

Linear Probing
Issues:

Clustering
Long filled sections which slow down insertion and lookup

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 12 / 16

Double Hashing
Insertion:

If we run into a collision with our initial hash, we apply a second hash function to
determine an increment
Suppose h1(k) = k%7 and h2(k) = k%3 + 1

Let us try to insert 22

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 13 / 16

Double Hashing
Lookup:

Resize if necessary
Apply initial hash
whilst key/empty slot is not found keep jumping by second hash increment

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 14 / 16

Double Hashing
Deletion:

Backshift method is more difficult due to the varying increments
Tombstone method is still the same

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 15 / 16

Summary
Deletion:

All method have O(1) amortised and O(n) worst assuming a good hash function and
appropriate resizing
Usually we can resize by doubling the number of slots

Kyle, Freddie, and Andrew Hashmaps Friday Week 9 T2 2024 16 / 16

SORTING
ALGORITHMS

CONTENTS

• Big O Time Complexities

• Practical understanding of how the sort is performed

• Pros / cons

• NO IMPLEMENTATION

PROPERTIES OF SORTS

• Stability

• Adaptability

• In-Place

1 2 1 2

¯_(ツ)_/¯

SELECTION SORT

• Properties:
• Unstable
• Non-Adaptive
• In-Place

• Time Complexities
• Worst Case: O(n^2)
• Average Case: O(n^2)
• Best Case: O(n^2)

SELECTION SORT

CLICK ME TO SEE
ANIMATIONS

BUBBLE SORT

• Properties
• Stable
• Adaptive
• In-Place

• Time Complexities
• Worst Case: O(n^2)
• Average Case: O(n^2)
• Best Case: O(n) – An already sorted array

BUBBLE SORT

CLICK ME TO SEE
ANIMATIONS

INSERTION SORT

• Properties
• Stable
• Adaptive
• In-Place

• Time Complexities
• Worst Case: O(n^2)
• Average Case: O(n^2)
• Best Case: O(n) – An already sorted array

INSERTION SORT

CLICK ME TO SEE
ANIMATIONS

SHELL SORT

• Properties
• Non-Stable
• Adaptive
• In-Place

• Time Complexities
• Worst Case: Depends | O(n^2)
• Average Case: Depends
• Best Case: Depends | O(nlogn)

SHELL SORT

CLICK ME TO SEE
ANIMATIONS

MERGE SORT

• Properties
• Stable
• Non-Adaptive
• Not In-Place

• Time Complexities
• Worst Case: O(nlogn)
• Average Case: O(nlogn)
• Best Case: O(nlogn)

MERGE SORT

CLICK ME TO SEE
ANIMATIONS

QUICK SORT

• Properties
• Non-Stable
• ??? | Non-Adaptive
• In-Place

• Time Complexities
• Worst Case: O(n^2)
• Average Case: O(nlogn)
• Best Case: O(nlogn)

QUICK SORT

CLICK ME TO SEE
ANIMATIONS

QUICK SORT (MEDIAN OF 3)

	Part 1
	Thanks for coming!

