
Intro to Competitive Programming
And Rocking Coding Interviews

Kyle and Freddie



Attendance

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 1 / 27



Table of contents

1 It Starts Here
What is Competitive Programming
Relevance (and Pitfalls) to Technical Interviews

2 Time Complexity and Efficient Programs

3 Interactive Problem-solving

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 2 / 27



Welcome!
We will run programming workshops every three weeks throughout Term 1 (weeks 1,
4, 7).
Each workshop will last for approximately two hours.

This workshop in particular is more suited towards beginners and those who have
never heard of competitive programming before (workshops will cater to a variety of
audiences throughout the year).
Please feel free to ask questions at any time.
Slides will be uploaded to unswcpmsoc.com
Pizza at the end!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 3 / 27



Welcome!
We will run programming workshops every three weeks throughout Term 1 (weeks 1,
4, 7).
Each workshop will last for approximately two hours.
This workshop in particular is more suited towards beginners and those who have
never heard of competitive programming before (workshops will cater to a variety of
audiences throughout the year).

Please feel free to ask questions at any time.
Slides will be uploaded to unswcpmsoc.com
Pizza at the end!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 3 / 27



Welcome!
We will run programming workshops every three weeks throughout Term 1 (weeks 1,
4, 7).
Each workshop will last for approximately two hours.
This workshop in particular is more suited towards beginners and those who have
never heard of competitive programming before (workshops will cater to a variety of
audiences throughout the year).
Please feel free to ask questions at any time.
Slides will be uploaded to unswcpmsoc.com
Pizza at the end!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 3 / 27



What Is Competitive Programming?
Competitive Programming

Competitive programming is an activity where participants solve algorithmic prob-
lems within a fixed timeframe, aiming for efficient solutions.

In most competitive programming problems, you will be provided with a problem
statement which contains

Flavour Text (Problem Description)
Constraints
Input and Output Format

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 4 / 27



What Is Competitive Programming?
Competitive Programming

Competitive programming is an activity where participants solve algorithmic prob-
lems within a fixed timeframe, aiming for efficient solutions.

In most competitive programming problems, you will be provided with a problem
statement which contains

Flavour Text (Problem Description)
Constraints
Input and Output Format

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 4 / 27



Let’s Read a Problem

Did you know that 2024 is the year of the dragon? In fact, any year which is 8 more
than a multiple of 12 is the year of the dragon. Given a positive integer, determine
whether it is the year of the dragon.

Input: N (1 ≤ N ≤ 100 000)
Output: "YES" if N is the year of the dragon, and "NO" otherwise.

Solution: We output "YES" if 12 | (2024− 8), and "NO if 12 ∤ (2024− 8),

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 5 / 27



Let’s Read a Problem

Did you know that 2024 is the year of the dragon? In fact, any year which is 8 more
than a multiple of 12 is the year of the dragon. Given a positive integer, determine
whether it is the year of the dragon.

Input: N (1 ≤ N ≤ 100 000)
Output: "YES" if N is the year of the dragon, and "NO" otherwise.
Solution: We output "YES" if 12 | (2024− 8), and "NO if 12 ∤ (2024− 8),

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 5 / 27



The Importance of Time Complexity
As competitive programmers, we don’t only care about whether our program can give us a
’correct’ answer, but we also care equally about how ’fast’ our program runs.

The time complexity of an algorithm estimates how much time the algorithm
will use for some input. The idea is to represent the efficiency as a function
whose input is the size of the input.

Complexity is an upper bound for the number of steps an algorithm requires as
a function of the input size.
We can denote time complexity with big O notation. For example, if we add up
all elements in an N elements array, that would take O(N) steps.
We usually care about the time complexity in the worst case.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 6 / 27



The Importance of Time Complexity
As competitive programmers, we don’t only care about whether our program can give us a
’correct’ answer, but we also care equally about how ’fast’ our program runs.

The time complexity of an algorithm estimates how much time the algorithm
will use for some input. The idea is to represent the efficiency as a function
whose input is the size of the input.
Complexity is an upper bound for the number of steps an algorithm requires as
a function of the input size.

We can denote time complexity with big O notation. For example, if we add up
all elements in an N elements array, that would take O(N) steps.
We usually care about the time complexity in the worst case.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 6 / 27



The Importance of Time Complexity
As competitive programmers, we don’t only care about whether our program can give us a
’correct’ answer, but we also care equally about how ’fast’ our program runs.

The time complexity of an algorithm estimates how much time the algorithm
will use for some input. The idea is to represent the efficiency as a function
whose input is the size of the input.
Complexity is an upper bound for the number of steps an algorithm requires as
a function of the input size.
We can denote time complexity with big O notation. For example, if we add up
all elements in an N elements array, that would take O(N) steps.

We usually care about the time complexity in the worst case.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 6 / 27



The Importance of Time Complexity
As competitive programmers, we don’t only care about whether our program can give us a
’correct’ answer, but we also care equally about how ’fast’ our program runs.

The time complexity of an algorithm estimates how much time the algorithm
will use for some input. The idea is to represent the efficiency as a function
whose input is the size of the input.
Complexity is an upper bound for the number of steps an algorithm requires as
a function of the input size.
We can denote time complexity with big O notation. For example, if we add up
all elements in an N elements array, that would take O(N) steps.
We usually care about the time complexity in the worst case.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 6 / 27



How many multiples of 5?
We are given a list of N numbers, how many numbers are divisible by 5?

What should we do?

Answer:
Go through the N element array and check if each element is divisible by 5.

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N), as we simply apply the modulus operation to each element.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 7 / 27



How many multiples of 5?
We are given a list of N numbers, how many numbers are divisible by 5?

What should we do?

Answer:
Go through the N element array and check if each element is divisible by 5.

What is our input size?

N , as we have an N element array.

So what is the time complexity?
O(N), as we simply apply the modulus operation to each element.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 7 / 27



How many multiples of 5?
We are given a list of N numbers, how many numbers are divisible by 5?

What should we do?

Answer:
Go through the N element array and check if each element is divisible by 5.

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N), as we simply apply the modulus operation to each element.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 7 / 27



How many multiples of 5?
We are given a list of N numbers, how many numbers are divisible by 5?

What should we do?

Answer:
Go through the N element array and check if each element is divisible by 5.

What is our input size?
N , as we have an N element array.

So what is the time complexity?

O(N), as we simply apply the modulus operation to each element.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 7 / 27



How many multiples of 5?
We are given a list of N numbers, how many numbers are divisible by 5?

What should we do?

Answer:
Go through the N element array and check if each element is divisible by 5.

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N), as we simply apply the modulus operation to each element.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 7 / 27



How many multiples of 5? Continued
We are given an array A of N numbers, how many pairs of different elements exist such
that their sum is divisible by 5?

What should we do?

Answer:
Iterate through all pairs in the set {(x, y) : x ∈ A, y ∈ A} and check if 5 | (x+ y)

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N2), as we are now iterating through all pairs, and since there are

(
N
2

)
pairs, the

time complexity is O(N ·(N−1)
2 ). Since we only care about the dominating term, this is

simply equivalent to O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 8 / 27



How many multiples of 5? Continued
We are given an array A of N numbers, how many pairs of different elements exist such
that their sum is divisible by 5?

What should we do?

Answer:
Iterate through all pairs in the set {(x, y) : x ∈ A, y ∈ A} and check if 5 | (x+ y)

What is our input size?

N , as we have an N element array.

So what is the time complexity?
O(N2), as we are now iterating through all pairs, and since there are

(
N
2

)
pairs, the

time complexity is O(N ·(N−1)
2 ). Since we only care about the dominating term, this is

simply equivalent to O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 8 / 27



How many multiples of 5? Continued
We are given an array A of N numbers, how many pairs of different elements exist such
that their sum is divisible by 5?

What should we do?

Answer:
Iterate through all pairs in the set {(x, y) : x ∈ A, y ∈ A} and check if 5 | (x+ y)

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N2), as we are now iterating through all pairs, and since there are

(
N
2

)
pairs, the

time complexity is O(N ·(N−1)
2 ). Since we only care about the dominating term, this is

simply equivalent to O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 8 / 27



How many multiples of 5? Continued
We are given an array A of N numbers, how many pairs of different elements exist such
that their sum is divisible by 5?

What should we do?

Answer:
Iterate through all pairs in the set {(x, y) : x ∈ A, y ∈ A} and check if 5 | (x+ y)

What is our input size?
N , as we have an N element array.

So what is the time complexity?

O(N2), as we are now iterating through all pairs, and since there are
(
N
2

)
pairs, the

time complexity is O(N ·(N−1)
2 ). Since we only care about the dominating term, this is

simply equivalent to O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 8 / 27



How many multiples of 5? Continued
We are given an array A of N numbers, how many pairs of different elements exist such
that their sum is divisible by 5?

What should we do?

Answer:
Iterate through all pairs in the set {(x, y) : x ∈ A, y ∈ A} and check if 5 | (x+ y)

What is our input size?
N , as we have an N element array.

So what is the time complexity?
O(N2), as we are now iterating through all pairs, and since there are

(
N
2

)
pairs, the

time complexity is O(N ·(N−1)
2 ). Since we only care about the dominating term, this is

simply equivalent to O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 8 / 27



Let’s Play a Game
I am thinking of an integer A, where 1 ≤ A ≤ 1000. Try to guess my number in Q tries.

When Q = 1000

When Q = 11

Solution:
The best strategy is to pick the midpoint every time
The number of remaining options halves each time
We only need to guess at most log2Q times.

So what is the time complexity?
O(log2N), as every try we make, we are reducing our sample space by half. This is
what we call a logarithmic complexity.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 9 / 27



Let’s Play a Game
I am thinking of an integer A, where 1 ≤ A ≤ 1000. Try to guess my number in Q tries.

When Q = 1000

When Q = 11

Solution:
The best strategy is to pick the midpoint every time
The number of remaining options halves each time
We only need to guess at most log2Q times.

So what is the time complexity?
O(log2N), as every try we make, we are reducing our sample space by half. This is
what we call a logarithmic complexity.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 9 / 27



Let’s Play a Game
I am thinking of an integer A, where 1 ≤ A ≤ 1000. Try to guess my number in Q tries.

When Q = 1000

When Q = 11

Solution:
The best strategy is to pick the midpoint every time
The number of remaining options halves each time
We only need to guess at most log2Q times.

So what is the time complexity?

O(log2N), as every try we make, we are reducing our sample space by half. This is
what we call a logarithmic complexity.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 9 / 27



Let’s Play a Game
I am thinking of an integer A, where 1 ≤ A ≤ 1000. Try to guess my number in Q tries.

When Q = 1000

When Q = 11

Solution:
The best strategy is to pick the midpoint every time
The number of remaining options halves each time
We only need to guess at most log2Q times.

So what is the time complexity?
O(log2N), as every try we make, we are reducing our sample space by half. This is
what we call a logarithmic complexity.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 9 / 27



Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 10 / 27



Relevance to Coding Interviews
Gets you super comfortable creating efficient solutions under time pressure

Steps for Acing Coding Interviews:
1 Understand your task. Ask clarifying questions. Eg.

’Can we assume the input is valid’?
’Do we need to consider this extreme case [...]’?

2 Only begin to code once you fully appreciate the question
Explain the purpose of your code at a higher-level (ie. the big picture, and NOT
word for word)
Refine your solution to be more efficient as you go
Consistently keep your code easy to read and well-commented

3 Clean up syntax and readability
Ensure clear variable names, no overdeep nesting, and clear commenting to
explain more sophisticated logic

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 11 / 27



Relevance to Coding Interviews
Gets you super comfortable creating efficient solutions under time pressure

Steps for Acing Coding Interviews:

1 Understand your task. Ask clarifying questions. Eg.
’Can we assume the input is valid’?
’Do we need to consider this extreme case [...]’?

2 Only begin to code once you fully appreciate the question
Explain the purpose of your code at a higher-level (ie. the big picture, and NOT
word for word)
Refine your solution to be more efficient as you go
Consistently keep your code easy to read and well-commented

3 Clean up syntax and readability
Ensure clear variable names, no overdeep nesting, and clear commenting to
explain more sophisticated logic

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 11 / 27



Relevance to Coding Interviews
Gets you super comfortable creating efficient solutions under time pressure

Steps for Acing Coding Interviews:
1 Understand your task. Ask clarifying questions. Eg.

’Can we assume the input is valid’?
’Do we need to consider this extreme case [...]’?

2 Only begin to code once you fully appreciate the question
Explain the purpose of your code at a higher-level (ie. the big picture, and NOT
word for word)
Refine your solution to be more efficient as you go
Consistently keep your code easy to read and well-commented

3 Clean up syntax and readability
Ensure clear variable names, no overdeep nesting, and clear commenting to
explain more sophisticated logic

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 11 / 27



Relevance to Coding Interviews
Gets you super comfortable creating efficient solutions under time pressure

Steps for Acing Coding Interviews:
1 Understand your task. Ask clarifying questions. Eg.

’Can we assume the input is valid’?
’Do we need to consider this extreme case [...]’?

2 Only begin to code once you fully appreciate the question
Explain the purpose of your code at a higher-level (ie. the big picture, and NOT
word for word)
Refine your solution to be more efficient as you go
Consistently keep your code easy to read and well-commented

3 Clean up syntax and readability
Ensure clear variable names, no overdeep nesting, and clear commenting to
explain more sophisticated logic

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 11 / 27



Relevance to Coding Interviews
Gets you super comfortable creating efficient solutions under time pressure

Steps for Acing Coding Interviews:
1 Understand your task. Ask clarifying questions. Eg.

’Can we assume the input is valid’?
’Do we need to consider this extreme case [...]’?

2 Only begin to code once you fully appreciate the question
Explain the purpose of your code at a higher-level (ie. the big picture, and NOT
word for word)
Refine your solution to be more efficient as you go
Consistently keep your code easy to read and well-commented

3 Clean up syntax and readability
Ensure clear variable names, no overdeep nesting, and clear commenting to
explain more sophisticated logic

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 11 / 27



However...

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 12 / 27



However...

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 12 / 27



Mock Interview Time

Take a look at the power of time complexity here: Say we are given an array of size n and
we’re tasked with creating another array, whose ith element must equal the average of all
the elements up to index i in the first array.

Say our original array = [1, 2, 3, 4, 5]. Then our new array should be: [1, 1.5, 2, 2.5, 3.75].

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 13 / 27



Mock Interview Time
Take a look at the power of time complexity here: Say we are given an array of size n and
we’re tasked with creating another array, whose ith element must equal the average of all
the elements up to index i in the first array.

Say our original array = [1, 2, 3, 4, 5]. Then our new array should be: [1, 1.5, 2, 2.5, 3.75].

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 13 / 27



Array Averages
void ComputeAverages(int *original, double *newArray, int numElements) {

for (int i = 0; i < numElements; i++) {

double current_average = 0;

for (int j = 0; j <= i; j++) {

current_average = current_average + original[j];

}

current_average = current_average / (i + 1);

newArray[i] = current_average

}

}

Time complexity = 1 + 2 + 3 + ...+ n = n
2 · (n+ 1) = O(n2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 14 / 27



Array Averages
void ComputeAverages(int *original, double *newArray, int numElements) {

for (int i = 0; i < numElements; i++) {

double current_average = 0;

for (int j = 0; j <= i; j++) {

current_average = current_average + original[j];

}

current_average = current_average / (i + 1);

newArray[i] = current_average

}

}

Time complexity = 1 + 2 + 3 + ...+ n = n
2 · (n+ 1) = O(n2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 14 / 27



We Can Do Better!

void ComputeAverages(int *original, double *newArray, int numElements) {

int running_total = 0;

for (int i = 0; i < numElements; i++) {

running_total += original[i];

double current_average = running_total / (i + 1);

newArray[i] = current_average

}

}

Time complexity = O(n), as we avoid the nested loop

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 15 / 27



We Can Do Better!
void ComputeAverages(int *original, double *newArray, int numElements) {

int running_total = 0;

for (int i = 0; i < numElements; i++) {

running_total += original[i];

double current_average = running_total / (i + 1);

newArray[i] = current_average

}

}

Time complexity = O(n), as we avoid the nested loop

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 15 / 27



We Can Do Better!
void ComputeAverages(int *original, double *newArray, int numElements) {

int running_total = 0;

for (int i = 0; i < numElements; i++) {

running_total += original[i];

double current_average = running_total / (i + 1);

newArray[i] = current_average

}

}

Time complexity = O(n), as we avoid the nested loop

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 15 / 27



It’s Your Turn!

https://leetcode.com/problems/search-insert-position/

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 16 / 27

https://leetcode.com/problems/search-insert-position/


It’s Your Turn!
https://leetcode.com/problems/search-insert-position/

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 16 / 27

https://leetcode.com/problems/search-insert-position/


Maximum Contiguous Subarray Sum
Given an array of integers of length N , your task is to find the contiguous subarray
(sequence of elements within an array that are adjacent to each other) that has the
largest sum and print that sum.

If our given array is [−2, 1,−3, 4,−1, 2, 1,−5, 4], then the output should be 6 which
corresponds to the sum of the contiguous subarray [4,−1, 2, 1].

Have a go at thinking about an O(N3) solution!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 17 / 27



Maximum Contiguous Subarray Sum
Given an array of integers of length N , your task is to find the contiguous subarray
(sequence of elements within an array that are adjacent to each other) that has the
largest sum and print that sum.

If our given array is [−2, 1,−3, 4,−1, 2, 1,−5, 4], then the output should be 6 which
corresponds to the sum of the contiguous subarray [4,−1, 2, 1].

Have a go at thinking about an O(N3) solution!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 17 / 27



Maximum Contiguous Subarray Sum
Observation:

There are only
(
N
2

)
+N valid contiguous subarrays.

Each subarray will take in the worst case, O(N) operations to calculate its sum.
Thus, the total time complexity would be O(N3). As there are roughly O(N2) valid
contiguous subarrays and every subarray takes O(N) to summate, yielding a time
complexity of O(N3).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 18 / 27



Maximum Contiguous Subarray Sum
Observation:

There are only
(
N
2

)
+N valid contiguous subarrays.

Each subarray will take in the worst case, O(N) operations to calculate its sum.

Thus, the total time complexity would be O(N3). As there are roughly O(N2) valid
contiguous subarrays and every subarray takes O(N) to summate, yielding a time
complexity of O(N3).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 18 / 27



Maximum Contiguous Subarray Sum
Observation:

There are only
(
N
2

)
+N valid contiguous subarrays.

Each subarray will take in the worst case, O(N) operations to calculate its sum.
Thus, the total time complexity would be O(N3). As there are roughly O(N2) valid
contiguous subarrays and every subarray takes O(N) to summate, yielding a time
complexity of O(N3).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 18 / 27



Maximum Contiguous Subarray Sum
// N = number of elements in array, arr = initialised array

int ans = -1e9;

for (int i = 0; i < N; i++) {

for (int j = i; j < N; j++) {

// iterate through all valid intervals [i, j]

int sum = 0;

for (int k = i; k <= j; k++) {

sum += arr[k];

}

ans = max(ans, sum);

}

}

cout << ans;

Time complexity = O(N3), as we go through all O(N2) subarrays and then sum each one.
Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 19 / 27



Maximum Contiguous Subarray Sum
How can we make our solution faster?

Instead of calculating the sum of the subarray with another nested loop, we can
instead calculate the sum as we iterate through j.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 20 / 27



Maximum Contiguous Subarray Sum
How can we make our solution faster?

Instead of calculating the sum of the subarray with another nested loop, we can
instead calculate the sum as we iterate through j.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 20 / 27



Maximum Contiguous Subarray Sum
// N = number of elements in array, arr = initialised array

int ans = -1e9;

for (int i = 0; i < N; i++) {

int sum = 0;

for (int j = i; j < N; j++) {

// iterate through all valid intervals [i, j]

sum += arr[j];

ans = max(ans, sum);

}

}

cout << ans;

Time complexity = O(N2). The complexity of the inner j for loop is O(N), and we run the
j for loop a total of N times. So the total complexity if O(N2)

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 21 / 27



Maximum Contiguous Subarray Sum
We can do even better!

Hint: We can reuse our previous result, if we are currently at position i, we can make
use of the maximum contiguous subarray sum ending at position i− 1.
If the maximum contiguous subarray sum ending at position i− 1 is positive, we can
simply add on our current number to form an even longer contiguous subarray.
If the maximum contiguous subarray sum ending at position i− 1 is negative, we just
start a new contiguous subarray at position i and reset the sum variable.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 22 / 27



Maximum Contiguous Subarray Sum
We can do even better!

Hint: We can reuse our previous result, if we are currently at position i, we can make
use of the maximum contiguous subarray sum ending at position i− 1.

If the maximum contiguous subarray sum ending at position i− 1 is positive, we can
simply add on our current number to form an even longer contiguous subarray.
If the maximum contiguous subarray sum ending at position i− 1 is negative, we just
start a new contiguous subarray at position i and reset the sum variable.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 22 / 27



Maximum Contiguous Subarray Sum
We can do even better!

Hint: We can reuse our previous result, if we are currently at position i, we can make
use of the maximum contiguous subarray sum ending at position i− 1.
If the maximum contiguous subarray sum ending at position i− 1 is positive, we can
simply add on our current number to form an even longer contiguous subarray.

If the maximum contiguous subarray sum ending at position i− 1 is negative, we just
start a new contiguous subarray at position i and reset the sum variable.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 22 / 27



Maximum Contiguous Subarray Sum
We can do even better!

Hint: We can reuse our previous result, if we are currently at position i, we can make
use of the maximum contiguous subarray sum ending at position i− 1.
If the maximum contiguous subarray sum ending at position i− 1 is positive, we can
simply add on our current number to form an even longer contiguous subarray.
If the maximum contiguous subarray sum ending at position i− 1 is negative, we just
start a new contiguous subarray at position i and reset the sum variable.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 22 / 27



Maximum Contiguous Subarray Sum
// N = number of elements in array, arr = initialised array

int max_ending_here = arr[0];

int ans = arr[0];

for (int i = 1; i < n; i++) {

max_ending_here = max(max_ending_here + arr[i], arr[i]);

ans = max(ans, max_ending_here);

}

cout << ans;

Time complexity = O(N) as it’s one simple for loop!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 23 / 27



Longest Increasing Subsequence
You are given an N element array of integers. Your task is to find the length of the longest
increasing subsequence (LIS) within the array.

An increasing subsequence is a sequence of numbers in the array where each number is
greater than the previous number. However, the numbers in the subsequence do not have
to appear consecutively in the array.

For example, given the array [10, 9, 2, 5, 3, 7, 101, 18], the longest increasing
subsequence is [2, 3, 7, 101] with a length of 4.

Have a go at thinking about an O(N2) solution.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 24 / 27



Longest Increasing Subsequence
You are given an N element array of integers. Your task is to find the length of the longest
increasing subsequence (LIS) within the array.

An increasing subsequence is a sequence of numbers in the array where each number is
greater than the previous number. However, the numbers in the subsequence do not have
to appear consecutively in the array.

For example, given the array [10, 9, 2, 5, 3, 7, 101, 18], the longest increasing
subsequence is [2, 3, 7, 101] with a length of 4.

Have a go at thinking about an O(N2) solution.

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 24 / 27



Longest Increasing Subsequence
Observation:

Hint: Very similar idea to the O(N) solution to Maximum Contiguous Subarray Sum.

The idea we used before the reduce time complexity was to re-use previous results.
Let ans[i] store the length of the LIS ending at index i in the array. Can you now see
a O(N2) solution?
We go through the array once, and if we are currently at index i in the array, we check
all index j such that arr[j] ≤ arr[i]. If j ≤ i, we know we can extend the LIS ending
at j such that it now ends at i.
More formally, if arr[j] ≤ arr[i], we can update ans[i] such that
ans[i] = max(ans[i], ans[j] + 1).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 25 / 27



Longest Increasing Subsequence
Observation:

Hint: Very similar idea to the O(N) solution to Maximum Contiguous Subarray Sum.
The idea we used before the reduce time complexity was to re-use previous results.
Let ans[i] store the length of the LIS ending at index i in the array. Can you now see
a O(N2) solution?

We go through the array once, and if we are currently at index i in the array, we check
all index j such that arr[j] ≤ arr[i]. If j ≤ i, we know we can extend the LIS ending
at j such that it now ends at i.
More formally, if arr[j] ≤ arr[i], we can update ans[i] such that
ans[i] = max(ans[i], ans[j] + 1).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 25 / 27



Longest Increasing Subsequence
Observation:

Hint: Very similar idea to the O(N) solution to Maximum Contiguous Subarray Sum.
The idea we used before the reduce time complexity was to re-use previous results.
Let ans[i] store the length of the LIS ending at index i in the array. Can you now see
a O(N2) solution?
We go through the array once, and if we are currently at index i in the array, we check
all index j such that arr[j] ≤ arr[i]. If j ≤ i, we know we can extend the LIS ending
at j such that it now ends at i.

More formally, if arr[j] ≤ arr[i], we can update ans[i] such that
ans[i] = max(ans[i], ans[j] + 1).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 25 / 27



Longest Increasing Subsequence
Observation:

Hint: Very similar idea to the O(N) solution to Maximum Contiguous Subarray Sum.
The idea we used before the reduce time complexity was to re-use previous results.
Let ans[i] store the length of the LIS ending at index i in the array. Can you now see
a O(N2) solution?
We go through the array once, and if we are currently at index i in the array, we check
all index j such that arr[j] ≤ arr[i]. If j ≤ i, we know we can extend the LIS ending
at j such that it now ends at i.
More formally, if arr[j] ≤ arr[i], we can update ans[i] such that
ans[i] = max(ans[i], ans[j] + 1).

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 25 / 27



Longest Increasing Subsequence
// initialise the answer array

for (int i = 0; i < N; i++) answer_arr[i] = 1;

for (int i = 1; i < N; i++) {

for (int j = 0; j < i; j++) {

if (arr[j] < arr[i]) {

answer_arr[i] = max(answer_arr[i], answer_arr[j] + 1);

}

}

}

int final_ans = 0;

for (int i = 0; i < N; i++) {

final_ans = max(final_ans, answer_arr[i]);

}

cout << final_ans;

Time complexity = O(N2) as we have two nested loops.
Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 26 / 27



Our Parting Words

Focus on 2 main things when practising for interviews:
Efficient solutions
Readable and maintainable code

Go out there on Leetcode, CodeForces, there’s so much out there for you to explore!
Join our subcommittee!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 27 / 27



Our Parting Words
Focus on 2 main things when practising for interviews:

Efficient solutions
Readable and maintainable code

Go out there on Leetcode, CodeForces, there’s so much out there for you to explore!
Join our subcommittee!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 27 / 27



Our Parting Words
Focus on 2 main things when practising for interviews:

Efficient solutions
Readable and maintainable code

Go out there on Leetcode, CodeForces, there’s so much out there for you to explore!

Join our subcommittee!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 27 / 27



Our Parting Words
Focus on 2 main things when practising for interviews:

Efficient solutions
Readable and maintainable code

Go out there on Leetcode, CodeForces, there’s so much out there for you to explore!
Join our subcommittee!

Kyle and Freddie Intro to Competitive Programming Week 1 Friday T1 2024 27 / 27


	It Starts Here
	What is Competitive Programming
	Relevance (and Pitfalls) to Technical Interviews

	Time Complexity and Efficient Programs
	Interactive Problem-solving

