

Further Dynamic Programming

CPMSoc

Welcome

- Mathematics workshops will run every odd-numbered week (3, 5, 7, ...)
- Programming ones will run every even-numbered week (4, 6, 8, ...)
- Slides will be uploaded on our website (unswcpmsoc.com)
- Advertising for ICPC Prelim Contest:

Preliminary

DATES

Early bird registration closes 31st July* T Late registration closes 31st August Contest is on 3rd September

REGISTRATION

Fill out the registration form and follow the prompts at forms.office.com/r/7ti9uqjKEe.

Attendance form :D

Workshop Overview

- DP on a grid
- Subset Sum
- Knapsack
- Questions

Questions

- https://leetcode.com/problems/minimum-path-sum/
- https://leetcode.com/problems/partition-equal-subset-sum/description/
- https://www.hackerrank.com/contests/srin-aadc03/challenges/classic-01-knapsack/problem
- https://leetcode.com/problems/ones-and-zeroes/

Structure of a DP

Steps for Solving DP Problems

- Subproblems
- 2 Recurrence
- Base Cases

Given an n x n grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

1	3	1
1	5	1
4	2	1

Given an n x n grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

1	3	1
1	5	1
4	2	1

Given an n x n grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

Given an n x n grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

1	3	1
1	5	1
4	2	1

What is our current state?

Given an $n \times n$ grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

- What is our current state?
- What is our base case?

Given an $n \times n$ grid filled with integers, find a path from top left to bottom right, which maximises the sum of all numbers along its path.

- What is our current state?
- What is our base case?
- What is our recurrence?

You are given an array of N items, with given weights. Determine if it's possible to select a subset of these items with a total weight of W

 $\underline{Similar\ question:}\ https://leetcode.com/problems/partition-equal-subset-sum/description/$

You are given an array of N items, with given weights. Determine if it's possible to select a subset of these items with a total weight of W

Similar question: https://leetcode.com/problems/partition-equal-subset-sum/description/

■ What is our current state?

You are given an array of N items, with given weights. Determine if it's possible to select a subset of these items with a total weight of W

Similar question: https://leetcode.com/problems/partition-equal-subset-sum/description/

- What is our current state?
- What is our base case?

You are given an array of N items, with given weights. Determine if it's possible to select a subset of these items with a total weight of W

Similar question: https://leetcode.com/problems/partition-equal-subset-sum/description/

- What is our current state?
- What is our base case?
- What is our recurrence?

 \blacksquare There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?
- What is our base case?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?
- What is our base case?
- What is our recurrence?

■ There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?
- What is our base case?

- There are n items, with each having a different volume and value. You only have a bag of capacity m to carry these items. You can only fill up the bag with items until the capacity is full, so what is the most value you can get?
- What is our current state?
- What is our base case?
- What is our recurrence?


```
CLUBS
SUPPRESENT AS
```

```
def knapsack(m) {
  if (m == 0) {
    return 0:
  if (memo[m] != -1) {
    return memo[m];
  answer = 0;
  for (item in items) {
    if (volume[item] <= m) {</pre>
      answer = max(answer, value[item] + knapsack(m - volume[item]));
 memo[m] = answer;
  return memo[m];
```

Improved Knapsack


```
def knapsack(m, n) {
  if (n >= num items) {
    return 0:
  if (m == 0) {
    return 0:
  if (memo[m][n] != -1) {
    return memo[m][n];
  answer = max(0, knapsack(m, n+1));
  if (volume[n] <= m) {
    answer = max(answer, value[n] + knapsack(m - volume[n], n));
 memo[m] = answer;
  return memo[m];
```

Attendance form :D

Feedback form:D

Further events

Please join us for:

- Maths workshop next week
- Programming workshop in two weeks
- Sign up for ICPC Prelim contest!

Preliminary

DATES

Early bird registration closes 31st July* T Late registration closes 31st August Contest is on 3rd September

REGISTRATION

Fill out the registration form and follow the prompts at forms.office.com/r/7ti9uqjKEe.

