
Introduction to Dynamic Programming

CPMSoc

CPMSOCWelcome
Mathematics workshops will run every odd-numbered week (3, 5, 7, ...)
Programming ones will run every even-numbered week (4, 6, 8, ...)
We have lots of other events too (e.g. Integration Bee, Board Games next week)
Slides will be uploaded on our website (unswcpmsoc.com)
Hoodie sales will be released very soon!!!

CPMSoc Introduction to Dynamic Programming 19/06/23 1 / 23

CPMSOCAttendance form :D

CPMSoc Introduction to Dynamic Programming 19/06/23 2 / 23

CPMSOCWorkshop Overview
Introduction
Example

Fibonacci
Optimising Fibonacci

Types of Dynamic Programming
Further Examples to Try

CPMSoc Introduction to Dynamic Programming 19/06/23 3 / 23

CPMSOCIntroduction
What is Dynamic Programming (DP)?
Put simply, it’s a method for solving complex problems by breaking them down into
simpler subproblems.

Let’s have a look at an example!

CPMSoc Introduction to Dynamic Programming 19/06/23 4 / 23

CPMSOCFibonacci Sequence
The Fibonacci sequence goes like this 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

We can see that every number in the series is the sum of the previous two numbers
except the first two numbers.
The first number is 0 and the second number is 1. They are fixed. The third number
is 1 which is the sum of the previous two numbers 0 and 1.

Now lets take the function fib(n) which will return the nth number of the Fibonacci
sequence. A simple formula for it will look something like this:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2) if n > 1

Let’s put this into a function so we can calculate any Fibonacci number!

CPMSoc Introduction to Dynamic Programming 19/06/23 5 / 23

CPMSOCFibonacci Continued...
Lets start by breaking the problem down into simpler subproblems. We’ll start with the
’base cases’ which we know already as:

fib(0) = 0
fib(1) = 1

And similarly, we can break the problem of finding the nth Fibonacci number down into
simpler subproblems with the help of the formula

fib(n) = fib(n-1) + fib(n-2) if n > 1

CPMSoc Introduction to Dynamic Programming 19/06/23 6 / 23

CPMSOCFibonacci Continued...
Thus, a recursive algorithm will look something like this:

def Fib (n) {
/ / Base Cases
i f (n == 0) {

return 0;
}

i f (n == 1) {
return 1;

}
/ / Recursive Cases
return Fib (n − 1) + Fib (n − 2) ;

}

And when we call fib(6), we would get the output: 8 (working as intended)
However, it has some serious issues!
Question Time: What’s the issue and what can we do about it?

CPMSoc Introduction to Dynamic Programming 19/06/23 7 / 23

CPMSOCThe Recursion Tree
Let’s start analysing what’s happening when we call the function fib(6). The recursive
nature of our function will call functions in the following manner -

CPMSoc Introduction to Dynamic Programming 19/06/23 8 / 23

CPMSOCRecursion Tree Continued...
It is clear that there are quite a few subproblems which are overlapping -

CPMSoc Introduction to Dynamic Programming 19/06/23 9 / 23

CPMSOCRecursion Tree Continued...
fib(4) is being called 2 times
fib(3) is being called 3 times
fib(2) is being called 4 times

In general, we want to make sure that overlapping subproblems are solved (calculated)
using our function only once in dynamic programming - calculating them is an expensive
task!
In order to achieve this goal, we will save the solutions to overlapping subproblems in a
data structure. This is called "memoization" or "caching"!

CPMSoc Introduction to Dynamic Programming 19/06/23 10 / 23

CPMSOCThe DP Approach
We can store the results of solved subproblems inside a data structure like an array, and
the function will check if a subproblem has already been solved before or not.
If it has been solved before, we won’t solve it again, we just used the already calculated
value.
Lets take an array memo[] and populate it with a value that can’t ever occur, say... -1.

Now for fib(n) we will check if memo[n] is equal to -1 or not. If it isn’t then we can continue
solving it and if it is we can just return the already calculated value.

Lets take a look at our new code!

CPMSoc Introduction to Dynamic Programming 19/06/23 11 / 23

CPMSOCImproved Fibonacci
def Fib (n) {

i f (n == 0) {
return 0;

}

i f (n == 1) {
return 1;

}

i f (memo[n] != −1) {
return memo[n] ;

}

memo[n] = Fib (n − 1) + Fib (n − 2) ;
return memo[n] ;

}

CPMSoc Introduction to Dynamic Programming 19/06/23 12 / 23

CPMSOCComparing Complexities
Talk with the people around you and discuss what the effect of Memoization has done to
the complexity of the program!
Some things to take note are:

What was the time complexity of the original program?
What is the new time complexity and how much has it improved?

CPMSoc Introduction to Dynamic Programming 19/06/23 13 / 23

CPMSOCComparing Complexities Continued...
In the recursive approach for every value, two function are called. For example, fib(6) calls
fib(5) and fib(4). Fib(5) calls fib(4) and fib(3), etc.
Hence, the time complexity is O(2n) which is very slow!

Now, in the dynamic programming approach however, we are only solving each
subproblem once e.g. fib(0), fib(1), fib(2), etc. And since we have n subproblems the
complexity comes out to be just O(n). A huge improvement!

CPMSoc Introduction to Dynamic Programming 19/06/23 14 / 23

CPMSOCStructure of a DP
So from that example, we can now extract some general steps required to solve DP
problems Steps for Solving DP Problems

1 Define subproblems
2 Formulate a recurrence that relates subproblems
3 Recognise and solve the original problem
4 Define the base casess

Each step is very important!

CPMSoc Introduction to Dynamic Programming 19/06/23 15 / 23

CPMSOCTypes of Dynamic Programming
Recursive DP

Our Fibonacci example is an example of this type of DP
Called "top-down" DP

You start from the ’top’, and do function calls ’down’
Very similar to regular recursion format
The DP function will record its previously calculated answer
This is stored in your DP cache

Iterative DP
Prefix sum is an example of this type of DP
Called "bottom-up" DP

You start from the ’bottom’ case, and use that to build ’up’ other cases
Instead of recursive function calls, use a for loop
Generate answers in order
All answers should be stored in DP cache

Now that you’ve got some understanding of dynamic programming, lets apply what you’ve
learnt to some more examples

CPMSoc Introduction to Dynamic Programming 19/06/23 16 / 23

CPMSOCMaximum Non-Adjacent Subarray Sum
Find the maximum subset sum in an array, where you cannot select any 2 adjacent
elements

For example, given the array [4, 1, 1, 4], find the maximum sum of elements following
the constraints
Answer: 8, picking the two 4s

Brute force approach
Horrible time complexity, but also painful to code up

DP (recursive)
DP (iterative)

CPMSoc Introduction to Dynamic Programming 19/06/23 17 / 23

CPMSOCCoin Change Problem
Given a few types of coins, make a certain amount of change with the least number
of coins

For example, given 1c, 3c and 4c coins, make 17 cents with as few coins as possible
Answer: 4x 4c coins and 1x 1c coin.

Brute force approach
Still a poor time complexity, but a bit easier to code - decent for smaller input sizes

DP (recursive)
DP (iterative)

CPMSoc Introduction to Dynamic Programming 19/06/23 18 / 23

CPMSOCCoin Combinations 1
Given a few types of coins, how many permutations are there to make a certain
amount of change.

For example, given 2c and 6c coins, make 10 cents.
Answer: 4 (2+2+6, 2+6+2, 6+2+2, 2+2+2+2+2)

Brute force approach
Still a poor time complexity, but a bit easier to code - decent for smaller input sizes

DP (recursive)
DP (iterative)
Coin Combinations 2

Same problem but with combinations (so order doesn’t matter)
Answer to previous example: 2 (2x2c + 1x6c, 5x2c)

CPMSoc Introduction to Dynamic Programming 19/06/23 19 / 23

CPMSOCElevator Rides
Given n people, with the ith person having a weight of wi, who want to ride an
elevator with a weight capacity of x, find the minimum number of trips to take
everyone to the top.

For example, there are people with weight 60 kg, 70kg and 80 kg, and the elevator has a
capacity of 130 kg
Answer: the minimum number of trips is 2. One trip has 60+70=130 kg, the second has
80 kg

Brute force approach
Poor time complexity, difficult to code

DP (recursive)
DP (iterative)

CPMSoc Introduction to Dynamic Programming 19/06/23 20 / 23

CPMSOCAttendance form :D

CPMSoc Introduction to Dynamic Programming 19/06/23 21 / 23

CPMSOCFeedback form :D

CPMSoc Introduction to Dynamic Programming 19/06/23 22 / 23

CPMSOCFurther events
Please join us for:

Maths workshop next week
Programming workshop in two weeks
Integration Bee next Wednesday
Board Games next Thursday
Hoodie sales will be released very soon!!!

CPMSoc Introduction to Dynamic Programming 19/06/23 23 / 23

	Introduction
	Welcome
	Overview

	Introduction
	Fibonacci
	Thanks for coming!
	Food time!

