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® About me: Sixth year Computer Science / Mathematics
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theory.
o | like:
® Ruining my sleep schedule from time to time.
® Teaching and learning about new things.

® Nom nom.
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Introduction to Maximum Flow

A flow network is a directed and weighted graph G = (V, E),
where each edge (u, v) € E has a weight w,,. This is called the

capacity.
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The Maximum Flow Problem

® Given a flow network, how much flow can we send from s to ¢
assuming we have an infinite supply in s?

Maximum flow: 7.
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Ford-Fulkerson

® Try as many paths as possible!
® Find s — t paths and send flow down the path.

® When updating flows and capacities, send flow back an edge.
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Flow: 3.
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Flow: 3. Hmmm... can we do better?
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Flow: 5.
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Flow: 5. So... what went wrong?



® We need a way to “undo” flow.
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Ford-Fulkerson

® We need a way to “undo” flow.
® We can denote the amount of flow we can send back with an
arrow in the reverse direction.

® Keep finding s — t paths this way until no more paths are
available.
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Terminate with maximum flow of 5.
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Ford-Fulkerson

Note that there are finite many paths from s to t; therefore, the
algorithm must terminate.

Every time we “reuse” an edge, we send flow back to try for a
better s — t path.

The final output of the Ford-Fulkerson algorithm is a set of
“saturated” edges which correspond to the edges that are used
in the maximum flow of the flow network.

Running time: O(|E| - |f]), where |f]| is the flow of the graph.



Other algorithms

Other algorithms exist that solve the Maximum Flow problem with
various running times.

® Edmonds-Karp — special modification of Ford-Fulkerson:
O(IE| - min{|V] - [EL [f]}).

® Dinic’s algorithm - O(|V|? - |E]).

® Preflow push algorithm — O(|V|? - |E]).
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Maximum Flow-Minimum Cut

Cuts in a Flow Network

A cutin a flow network is a partition of vertices into two sets S and
T such that:

e SUT=YV.
* SNT=0.
® scS teT.
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Maximum Flow-Minimum Cut

Cuts in a Flow Network

A cutin a flow network is a partition of vertices into two sets S and
T such that:

e SUT=YV.
* SNT=0.
® scS teT.

The cut splits the graph into two parts such that s and ¢ are
completely separated!

Capacity of a cut

The capacity of a cut is the sum of the capacity of the edges that
“pass” through the cut in the forward direction (i.e. a directed edge
fromue StoveT).
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Capacity of cut: 6.
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Maximum Flow-Minimum Cut Theorem

Maximum Flow-Minimum Cut Theorem

The maximum flow of a flow network corresponds to the minimum
capacity cut of the flow network.
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Maximum Flow-Minimum Cut Theorem

® All s — t paths must pass through the red edges.
® Minimum cut — limits the amount of flow that can be sent to
these edges.
® Maximum flow — must send flow along the edges along the
minimum cut.
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General structure of the theorems

Given a structure, the maximum of A corresponds to the minimum
of B.

Given a flow network F, the maximum flow of F corresponds to the
minimum cut of F. J

It turns out there are many other theorems that have this same
shape!
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Hall’s Marriage Theorem

Let ¥ be a family (or collection) of sets and let X be the union of
elements in all sets of 7.

Transversal of a set
We say that a subset S € X is a transversal for ¥ if S is comprised of
one element from each set in .

In other words, for each set F in ¥, pick one element from F to

represent the set.
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Hall’s Marriage Theorem

When does a transversal exist? Let’s consider a subcollection G of
sets in F.
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Hall’s Marriage Theorem

When does a transversal exist? Let’s consider a subcollection G of
sets in F.

® Assign an element from S to represent a set in G.

Hmm... assigning an element directly from S might not give us the
right assignment because we could accidentally choose an element
that doesn’t appear in any set in G. Oops...

Let’s fix this!
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Hall’s Marriage Theorem

Let’s try again!
When does a transversal exist? Let’s consider a subcollection G of
sets in 7. We denote Y to be the set of elements that belong to at

least one set in G.
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Hall’s Marriage Theorem

Let’s try again!
When does a transversal exist? Let’s consider a subcollection G of
sets in 7. We denote Y to be the set of elements that belong to at
least one set in G.

® Assign an element from Y to represent a set in G.
We now have limited our choice of elements to all elements that
belong in some set in G. However, what if we don’t have enough
elements?
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Let’s enforce that! If a transversal exists, then we need |G| < |Y].
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Let’s enforce that! If a transversal exists, then we need |G| < |Y]. It
turns out this is both sufficient and necessary! Therefore, a
transversal exists if and only if

Gl < Y=

s

Seg

for every subcollection G C .
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Let’s enforce that! If a transversal exists, then we need |G| < |Y]. It
turns out this is both sufficient and necessary! Therefore, a
transversal exists if and only if

Gl < Y=

s

Seg

for every subcollection G C .
Our theorem!

Hall’s Marriage Theorem

Let ¥ be a family (collection) of finite sets. Then # has a
transversal if and only if, for every subcollection G C 7,

s

Seg

G| <
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Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

® How could we represent this information as a graph?
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Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

® How could we represent this information as a graph?
® Each set in F represents a woman with a list of men they
wouldn’t mind marrying.

® Therefore, an edge represents the possibility of a married
couple.

® For any collection of women, we need to have enough men to
match to each woman.
® This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W| < [N(W)]|, where W is a set of women and N(W)

represents the men that is connected to at least one woman in
W.
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F = {As, Ay, Az, As},
A1 =A{a, b, c},
Ay = {a},
Az ={c, d},
Ay ={c, d}.
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F = {As, Ay, Az, As},
A1 =A{a, b, c},
Ay = {a},
Az ={c, d},
Ay ={c, d}.
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Graph-theoretic formulation of Hall’s Marriage Theorem

Hall’s Marriage Theorem

More formally, let G = (V, E) be a bipartite graph with partition V,
and V, such that V; U V, = V. Also, suppose that |V;| = | V,|. Then
G has a perfect matching if and only if, for every S € V;,

S| < IN(S)I.
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Maximum Flow-Minimum Cut = HMT
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Maximum Flow-Minimum Cut = HMT
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Maximum Flow-Minimum Cut = HMT
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Maximum Flow-Minimum Cut = HMT
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Maximum Flow-Minimum Cut = HMT
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® Edges that cross the minimum cut can only belong to either the
red or blue side but not both!
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® Take some subset S € V;. Then N(S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S.



40/59

® Edges that cross the minimum cut can only belong to either the
red or blue side but not both!
® Take some subset S C V;. Then N(S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S.
® By only considering these vertices, then the maximum flow
sends one unit of flow to each of these vertices.
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® Edges that cross the minimum cut can only belong to either the
red or blue side but not both!
® Take some subset S C V;. Then N(S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S.
® By only considering these vertices, then the maximum flow
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An example of a bipartite graph that satisfies Hall’s condition and
an example of a bipartite graph that does not satisfy Hall’s
condition.

® Taking the last two vertices in the red vertex set does not
satisfy Hall’s condition. Note that the maximum flow of the
second flow network is 3.
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Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

® Reflexivity: R(x, x) for all x € P.
® Antisymmetry: R(x,y),R(y,x) = x=y.
® Transitivity: R(x,y), R(y,z) = R(x,z).

Chains of P

Let P be a finite partially ordered set. A chain is a subset C € P
such that, for any two elements x, y € C, either R(x, y) or R(y, x).
We say that x and y are comparable.
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Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.
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Dilworth’s Theorem

It turns out that the largest sized antichain corresponds to the
smallest number of chains required to cover P! This is our theorem
that we want to explore.
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Dilworth’s Theorem

It turns out that the largest sized antichain corresponds to the
smallest number of chains required to cover P! This is our theorem
that we want to explore.

Dilworth’s Theorem

Let P be a finite partially ordered set and suppose that C is the
smallest collection of disjoint chains that partition P. Let ‘A be a
largest antichain of P. Then |A| = |C]|.
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Reformulating Dilworth’s Theorem

® Every point p in P corresponds to two vertices: p~ and p*.
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Reformulating Dilworth’s Theorem

® Every point p in P corresponds to two vertices: p~ and p*.

® In P, if R(x, y) where x # y, then draw an edge with capacity 1
from x~ to y*. There are additional source and sink vertices.

e

L
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12:\b
® Let |f| denote the maximum flow of the flow network
constructed by the Hasse diagram.
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12:\b

® Let |f| denote the maximum flow of the flow network
constructed by the Hasse diagram.

® Then P is partitioned into |B| = |P| — |f| chains.

® We obtain the two chains in the flow network by following
along the paths:

{s>27 54" 54 512" > ¢}, 2—>4->12
{s >3 -6 -t} (3—6)
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® We now compute the size of the largest antichain.
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12*\3
® We now compute the size of the largest antichain.
® Consider a cut (S, T) in the flow network. Consider all vertices
p € Psuch that p~ € Sand p* € T. Call it A.
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® We now compute the size of the largest antichain.
® Consider a cut (S, T) in the flow network. Consider all vertices
p € Psuch that p~ € Sand p* € T. Call it A.
® Ifabe A thena € Sand b* € T. If (a”, b") was an edge,
then s and t would have to be connected. Therefore, a~ and b*
has no edge. In other words, a, b are incomparable.
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® We now compute the size of the largest antichain.
® Consider a cut (S, T) in the flow network. Consider all vertices
p € Psuch that p~ € Sand p* € T. Call it A.
® Ifabe A thena € Sand b* € T. If (a”, b") was an edge,
then s and t would have to be connected. Therefore, a~ and b*
has no edge. In other words, a, b are incomparable.
® The only edges that contribute towards the capacity cut are the
edges (s,a”) and (a*, t). Therefore, this excludes all of the
elements in A; that is,

oS, T)=|PI-|Al = |Al=|P[-c(5T).
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® Maximum Flow: |P| — | B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).
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® Maximum Flow: |P| — | B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).

® Minimum Cut: |P| — |A|; size of an antichain. So | A| is
maximised (i.e. the largest antichain size).
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® Maximum Flow: |P| — | B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).

® Minimum Cut: |P| — |A|; size of an antichain. So | A| is
maximised (i.e. the largest antichain size).

® Therefore, the largest sized antichain corresponds to the
smallest number of chains that partition P.
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Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V, E) where u,v € V are two non-adjacent vertices.

® Question: How many edge-disjoint paths are there from u to
v?
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Menger’s Theorem

It turns out that the maximum number of edge-disjoint paths from
u to v corresponds to the minimum number of edges required to
separate u and v!

Menger’s Theorem

If u,v € V, then there is a (u, v)-separating set of edges S and a
collection of edge-disjoint paths  from u to v such that |S| = |P]|.
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Reformulating Menger’s Theorem

® ;is the source and v is the sink vertex.

® Each edge has capacity 1.

® Note that no two u — v paths can share an edge.
® Therefore, the maximum flow corresponds to the maximum
number of edge-disjoint paths from u to v.
® Since each edge has capacity 1, a cut counts the number of
edges that pass through the cut.
® Therefore, the minimum cut corresponds to the minimum
number of edges to remove from the graph.
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Concluding Remarks

Other theorems that have relations to maximum flow.
® Ko6nig’s Theorem — maximal matching.
® Mirsky’s Theorem — dual of Dilworth’s Theorem.

® Greene’s Theorem — Generalisation of Dilworth’s Theorem.
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