
Intro to Competitive Programming

CPMSoc

CPMSOCWelcome
Mathematics workshops will run every even-numbered week (4, 6, 8, ...)
Programming ones will run every odd-numbered week (3, 5, 7, ...)
Slides will be uploaded on our website (unswcpmsoc.com)

CPMSoc Intro to Competitive Programming 20/2/23 1 / 22

CPMSOCWorkshop Overview
Key concepts
Application to Binary Search
Demonstration
Solve problems together

CPMSoc Intro to Competitive Programming 20/2/23 2 / 22

CPMSOCConceptual toolbox
Time Complexity
Precomputation
Solution space
Invariants

CPMSoc Intro to Competitive Programming 20/2/23 3 / 22

CPMSOCTime Complexity
Big "O" Notation
Asymptotic Time Complexity
Worst-Case Time Complexity

If you change the input size, how does it change the runtime of your algorithm?

CPMSoc Intro to Competitive Programming 20/2/23 4 / 22

CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.

CPMSoc Intro to Competitive Programming 20/2/23 5 / 22

CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.

Approach: Knock at each house

CPMSoc Intro to Competitive Programming 20/2/23 5 / 22

CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.

Approach: Knock at each house
Time complexity:

Double the houses => Double the time

CPMSoc Intro to Competitive Programming 20/2/23 5 / 22

CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.

Approach: Knock at each house
Time complexity:

Double the houses => Double the time
Grows "Linearly" or O(n) (like a line)

CPMSoc Intro to Competitive Programming 20/2/23 5 / 22

CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

CPMSoc Intro to Competitive Programming 20/2/23 6 / 22

CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.

CPMSoc Intro to Competitive Programming 20/2/23 6 / 22

CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.
Time complexity:

Double the houses => Quadruple the time

CPMSoc Intro to Competitive Programming 20/2/23 6 / 22

CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.
Time complexity:

Double the houses => Quadruple the time
Grows "Quadratically" or O(n2) (like a square)

CPMSoc Intro to Competitive Programming 20/2/23 6 / 22

CPMSOCHigher or Lower
Let’s play a game of Higher or Lower.

What is the optimal strategy?

CPMSoc Intro to Competitive Programming 20/2/23 7 / 22

CPMSOCHigher or Lower
Let’s play a game of Higher or Lower.

I have a number between 1 and 1000.

What is the optimal strategy?

CPMSoc Intro to Competitive Programming 20/2/23 7 / 22

CPMSOCHigher or Lower
Let’s play a game of Higher or Lower.

I have a number between 1 and 1000.
After each guess you make, I’ll tell you if my number is higher or lower than your
guess.

What is the optimal strategy?

CPMSoc Intro to Competitive Programming 20/2/23 7 / 22

CPMSOCHigher or Lower
Observations:

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time
Never need more than log2(number of options) moves

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time
Never need more than log2(number of options) moves

Time complexity:
Double the number of options => 1 extra guess

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time
Never need more than log2(number of options) moves

Time complexity:
Double the number of options => 1 extra guess
Grows "Logarithmically" or O(log n) (basically nothing)

CPMSoc Intro to Competitive Programming 20/2/23 8 / 22

CPMSOCMathematically
"Rules":

CPMSoc Intro to Competitive Programming 20/2/23 9 / 22

CPMSOCMathematically
"Rules":

Constants dont matter: O(n+ 3) = O(n)

CPMSoc Intro to Competitive Programming 20/2/23 9 / 22

CPMSOCMathematically
"Rules":

Constants dont matter: O(n+ 3) = O(n)

Coefficients dont matter: O(42n) = O(n)

CPMSoc Intro to Competitive Programming 20/2/23 9 / 22

CPMSOCMathematically
"Rules":

Constants dont matter: O(n+ 3) = O(n)

Coefficients dont matter: O(42n) = O(n)

Small things dont matter: O(n2 + n) = O(n2)

CPMSoc Intro to Competitive Programming 20/2/23 9 / 22

CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime

CPMSoc Intro to Competitive Programming 20/2/23 10 / 22

CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime
There are more subtleties and nuances to the topic

CPMSoc Intro to Competitive Programming 20/2/23 10 / 22

CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime
There are more subtleties and nuances to the topic
Which you’ll learn in COMP2521 and COMP3821

CPMSoc Intro to Competitive Programming 20/2/23 10 / 22

CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime
There are more subtleties and nuances to the topic
Which you’ll learn in COMP2521 and COMP3821
I’ll focus on how you’d practically use it

CPMSoc Intro to Competitive Programming 20/2/23 10 / 22

CPMSOCWill it run in One Second?

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22

CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22

CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

Plug the maximum value of n into the time complexity equation, and if it goes over 100
Million then your algorithm probably won’t run in time.

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22

CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

Plug the maximum value of n into the time complexity equation, and if it goes over 100
Million then your algorithm probably won’t run in time.

For example, an O(n2) algorithm when n ≤ 100, 000

(100, 000)2 > 108 So it’s too slow.

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22

CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

n Possible Complexities
n ≤ 10 O(n!)
n ≤ 20 O(n · 2n)
n ≤ 400 O(n3)
n ≤ 104 O(n2)
n ≤ 105 O(n

√
n) or O(n log2 n)

n ≤ 106 O(n log n)
n ≤ 107 O(n)
n ≤ 109+ O(log n) or O(1)

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22

CPMSOCPrecomputation

CPMSoc Intro to Competitive Programming 20/2/23 12 / 22

CPMSOCPrecomputation
Process the data beforehand to save time later

CPMSoc Intro to Competitive Programming 20/2/23 12 / 22

CPMSOCPrecomputation
Process the data beforehand to save time later
Structure your data, specific for the queries you need

CPMSoc Intro to Competitive Programming 20/2/23 12 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach 2: Collect a list of the breeds of each dog. For each dog you have, count how
many other dogs of the same breed there are in the list

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach 2: Collect a list of the breeds of each dog. For each dog you have, count how
many other dogs of the same breed there are in the list

Still need to look at every dog to check each dog!

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach 2: Collect a list of the breeds of each dog. For each dog you have, count how
many other dogs of the same breed there are in the list

Still need to look at every dog to check each dog!
Double the dogs => Quadruple the time

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach 2: Collect a list of the breeds of each dog. For each dog you have, count how
many other dogs of the same breed there are in the list

Still need to look at every dog to check each dog!
Double the dogs => Quadruple the time
Grows "Quadratically" or O(n2)

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.

Time complexity:
Double the dogs => Double the time (plus a bit)

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.

Time complexity:
Double the dogs => Double the time (plus a bit)
Grows "log-linearly" O(n log n)

CPMSoc Intro to Competitive Programming 20/2/23 13 / 22

CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

CPMSoc Intro to Competitive Programming 20/2/23 14 / 22

CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 1: For each phone number, search through the entire phonebook until you find
it.

CPMSoc Intro to Competitive Programming 20/2/23 14 / 22

CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 1: For each phone number, search through the entire phonebook until you find
it.

Time complexity is O(nq).

CPMSoc Intro to Competitive Programming 20/2/23 14 / 22

CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 2: Sort the phonebook and use higher-or-lower to search for each of your
numbers.

CPMSoc Intro to Competitive Programming 20/2/23 14 / 22

CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 2: Sort the phonebook and use higher-or-lower to search for each of your
numbers.

Time complexity is O(n log n+ q log n).

CPMSoc Intro to Competitive Programming 20/2/23 14 / 22

CPMSOCBinary Search Code
i n t binary_search (i n t a r r [100000] , i n t va l) {

i n t l e f t = 0 ;
i n t r i g h t = 100000;
while (r i g h t − l e f t > 1) {

i n t mid = (l e f t + r i g h t) / 2 ;
i f (a r r [mid] <= va l) l e f t = mid ;
else r i g h t = mid ;

}
return l e f t ;

}

CPMSoc Intro to Competitive Programming 20/2/23 15 / 22

CPMSOCInvariants

CPMSoc Intro to Competitive Programming 20/2/23 16 / 22

CPMSOCInvariants
arr[L] < val is true at every iteration.
arr[R] ≥ val is true at every iteration.

CPMSoc Intro to Competitive Programming 20/2/23 16 / 22

CPMSOCInvariants
arr[L] < val is true at every iteration.
arr[R] ≥ val is true at every iteration.
After each iteration, the remaining interval halves

CPMSoc Intro to Competitive Programming 20/2/23 16 / 22

CPMSOCMedusa’s Snakes
Medusa has snakes instead of hair. Each of her snakes DNA is represented by an
uppercase string of letters. Each letter is one of S, N, A, K or E. Your extensive research
shows that a snakes venom level depends on its DNA. A snake has venom level x if its
DNA:

has exactly 5x letters
begins with x copies of the letter S
then has x copies of the letter N
then has x copies of the letter A
then has x copies of the letter K
ends with x copies of the letter E.

By deleting zero or more letters from the DNA, what is the maximum venom level this
snake could have?
The length of the DNA is at most 100 000.

CPMSoc Intro to Competitive Programming 20/2/23 17 / 22

CPMSOCToolbox - data structures
Arrays
Sorted arrays
Linked lists
Graphs
Hash table
Cache/memoization

CPMSoc Intro to Competitive Programming 20/2/23 18 / 22

CPMSOCToolbox - algorithms
Binary search
Graph search algorithms
Greedy algorithms
Recursion/divide and conquer
Dynamic programming
String algorithms
Sorting and searching

CPMSoc Intro to Competitive Programming 20/2/23 19 / 22

CPMSOCAttendance form :D

CPMSoc Intro to Competitive Programming 20/2/23 20 / 22

CPMSOCFeedback form :D

CPMSoc Intro to Competitive Programming 20/2/23 21 / 22

CPMSOCFurther events
Please join us for:

Social session tomorrow 4pm
Math workshop next week
Programming workshop in two weeks

CPMSoc Intro to Competitive Programming 20/2/23 22 / 22

	Introduction
	Welcome
	Overview

	Concepts
	Time Complexity
	Precomputation
	Invariants

