
Intro to Competitive Programming

CPMSoc



CPMSOCWelcome
Mathematics workshops will run every even-numbered week (4, 6, 8, ...)
Programming ones will run every odd-numbered week (3, 5, 7, ...)
Slides will be uploaded on our website (unswcpmsoc.com)
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CPMSOCWorkshop Overview
Key concepts
Application to Binary Search
Demonstration
Solve problems together
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CPMSOCConceptual toolbox
Time Complexity
Precomputation
Solution space
Invariants
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CPMSOCTime Complexity
Big "O" Notation
Asymptotic Time Complexity
Worst-Case Time Complexity

If you change the input size, how does it change the runtime of your algorithm?
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CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.
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CPMSOCCounting Dogs
let’s say you want to find how many people on a street own a dog.

Approach: Knock at each house
Time complexity:

Double the houses => Double the time
Grows "Linearly" or O(n) (like a line)
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CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.
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CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.
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CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.
Time complexity:
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CPMSOCCounting Dogs 2
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach: For each dog-owner, ask every other dog owner if they have the same breed.
Time complexity:

Double the houses => Quadruple the time
Grows "Quadratically" or O(n2) (like a square)
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CPMSOCHigher or Lower
Let’s play a game of Higher or Lower.

What is the optimal strategy?
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CPMSOCHigher or Lower
Let’s play a game of Higher or Lower.

I have a number between 1 and 1000.
After each guess you make, I’ll tell you if my number is higher or lower than your
guess.

What is the optimal strategy?
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CPMSOCHigher or Lower
Observations:
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CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time
Never need more than log2(number of options) moves

Time complexity:
Double the number of options => 1 extra guess
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CPMSOCHigher or Lower
Observations:

The best strategy is to pick the midpoint every time
The number of remaining options halves each time
Never need more than log2(number of options) moves

Time complexity:
Double the number of options => 1 extra guess
Grows "Logarithmically" or O(log n) (basically nothing)
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CPMSOCMathematically
"Rules":
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CPMSOCMathematically
"Rules":

Constants dont matter: O(n+ 3) = O(n)

Coefficients dont matter: O(42n) = O(n)

Small things dont matter: O(n2 + n) = O(n2)
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CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime
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CPMSOCTime Complexity
Time complexity captures relationship of input size => runtime
There are more subtleties and nuances to the topic
Which you’ll learn in COMP2521 and COMP3821
I’ll focus on how you’d practically use it
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CPMSOCWill it run in One Second?
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A good rule of thumb is the Magic Number of 100 Million or 108.

Plug the maximum value of n into the time complexity equation, and if it goes over 100
Million then your algorithm probably won’t run in time.
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CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

Plug the maximum value of n into the time complexity equation, and if it goes over 100
Million then your algorithm probably won’t run in time.

For example, an O(n2) algorithm when n ≤ 100, 000

(100, 000)2 > 108 So it’s too slow.

CPMSoc Intro to Competitive Programming 20/2/23 11 / 22



CPMSOCWill it run in One Second?
A good rule of thumb is the Magic Number of 100 Million or 108.

n Possible Complexities
n ≤ 10 O(n!)
n ≤ 20 O(n · 2n)
n ≤ 400 O(n3)
n ≤ 104 O(n2)
n ≤ 105 O(n

√
n) or O(n log2 n)

n ≤ 106 O(n log n)
n ≤ 107 O(n)
n ≤ 109+ O(log n) or O(1)
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CPMSOCPrecomputation
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CPMSOCPrecomputation
Process the data beforehand to save time later
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CPMSOCPrecomputation
Process the data beforehand to save time later
Structure your data, specific for the queries you need
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

Approach 2: Collect a list of the breeds of each dog. For each dog you have, count how
many other dogs of the same breed there are in the list
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street have the same breed of dog.
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many other dogs of the same breed there are in the list

Still need to look at every dog to check each dog!
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.

Time complexity:
Double the dogs => Double the time (plus a bit)
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CPMSOCCounting Dogs 2, Revisted
Problem: you want to figure out what’s the chance that two random dog owners on the
street have the same breed of dog.

We want it to be easy to find duplicates

Sort the list! This takes O(n log n) time
Count the length of each same-breed run.
This runs in O(n) time.

Time complexity:
Double the dogs => Double the time (plus a bit)
Grows "log-linearly" O(n log n)
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CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.
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CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 1: For each phone number, search through the entire phonebook until you find
it.
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CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 1: For each phone number, search through the entire phonebook until you find
it.

Time complexity is O(nq).
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CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 2: Sort the phonebook and use higher-or-lower to search for each of your
numbers.
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CPMSOCFinding a Value
Problem: Given a list of the phone numbers stored on your phone (q of them), and a
phonebook of length n, find out how many numbers from your list appear in the
phonebook.

Approach 2: Sort the phonebook and use higher-or-lower to search for each of your
numbers.

Time complexity is O(n log n+ q log n).
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CPMSOCBinary Search Code
i n t binary_search ( i n t a r r [100000] , i n t va l ) {

i n t l e f t = 0 ;
i n t r i g h t = 100000;
while ( r i g h t − l e f t > 1) {

i n t mid = ( l e f t + r i g h t ) / 2 ;
i f ( a r r [ mid ] <= va l ) l e f t = mid ;
else r i g h t = mid ;

}
return l e f t ;

}
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CPMSOCInvariants
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CPMSOCInvariants
arr[L] < val is true at every iteration.
arr[R] ≥ val is true at every iteration.
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CPMSOCInvariants
arr[L] < val is true at every iteration.
arr[R] ≥ val is true at every iteration.
After each iteration, the remaining interval halves
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CPMSOCMedusa’s Snakes
Medusa has snakes instead of hair. Each of her snakes DNA is represented by an
uppercase string of letters. Each letter is one of S, N, A, K or E. Your extensive research
shows that a snakes venom level depends on its DNA. A snake has venom level x if its
DNA:

has exactly 5x letters
begins with x copies of the letter S
then has x copies of the letter N
then has x copies of the letter A
then has x copies of the letter K
ends with x copies of the letter E.

By deleting zero or more letters from the DNA, what is the maximum venom level this
snake could have?
The length of the DNA is at most 100 000.
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CPMSOCToolbox - data structures
Arrays
Sorted arrays
Linked lists
Graphs
Hash table
Cache/memoization
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CPMSOCToolbox - algorithms
Binary search
Graph search algorithms
Greedy algorithms
Recursion/divide and conquer
Dynamic programming
String algorithms
Sorting and searching
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CPMSOCAttendance form :D
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CPMSOCFeedback form :D
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CPMSOCFurther events
Please join us for:

Social session tomorrow 4pm
Math workshop next week
Programming workshop in two weeks
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