
Disjoint set/Union find
CPMSoc Programming Term 2



Outline

1. The Problem
2. The Data Structure
3. The Implementation
4. The Optimizations

a. Path compression
b. Union by size

5. The Applications
a. Kruskal’s algorithm



The Problem

You have: a list of elements, each in their own set.



The Problem (merging)

You can: merge any two sets together.



The Problem (commonality)

You can: check whether two elements belong to the same set.

Yes No



The Problem

How can we do these two 
operations efficiently?



The Data Structure

Let’s represent the sets as a forest of trees.

Two elements belong to the same set if they have the same ancestor or root.



The Data Structure

We call the root of a tree the representative element of a set.



The Data Structure

To merge two sets, we point one of the representatives into the other.

Or



The Data Structure

Now either b or c is the new representative.

Or



The Data Structure

A more complicated example.



The Implementation (find)
Store the parent of an element 
using a map/dictionary. Our 
elements are strings.

find gets the representative of the 
set an element is in.

(C++ idiom to check if a key is in 
a map.)

Return the representative of the set 
the parent is in.

Otherwise, this element is 
already a representative.



The Implementation (commonality)

Two elements are in the same 
set if they have the same 
representative.



The Implementation (union)
(We call it merge because 
union is a keyword in C++.)

merge combines the sets of two 
elements together.

We must only merge if they are 
not already in the same set.

Change the parent of one of 
the representatives.



The Implementation

(1 means true)



The Optimizations (pathological case)

Depending on how we merge, we may end up with this kind of “tree”:



The Optimizations (pathological case)

It takes linear time to check if a and d are in the same set.

n



The Optimizations (path compression)

When we find the representative for d, we know that the representative for all 
its ancestors are the same.



The Optimizations (path compression)

So let’s flatten this path!



The Optimizations (path compression)

Change this element’s 
parent to the 
representative.



The Optimizations (path compression)

What’s the time complexity of this new data structure?

It now takes log n time on average (amortized) for find.

Proof: hard



The Optimizations (union by size)

When we merge these two sets, which resulting tree is better?



The Optimizations (union by size)

When we merge these two sets, which resulting tree is better?

2 3



The Optimizations (union by size)

Let’s store the size of each set in its representative.

2

1



The Optimizations (union by size)

We always point the smaller set’s representative into the larger one’s.

2

1

2 + 1 = 3



The Optimizations (union by size)

Store the size of each set by 
its representative element.

Point the smaller set’s 
representative into the larger 
one’s and update the set 
sizes. 

Initialize the size of a set if it 
doesn’t exist.



The Optimizations (union by size)

What’s the time complexity of this new data structure?

It also takes log n time (in the worst case) for find.

Proof: in the worst case, it’s a balanced binary tree.



The Optimizations

What if we combine the two optimizations?

- Path compression
- Union by size

What’s the time complexity of this new data structure?



The Optimizations

What if we combine the two optimizations?

- Path compression
- Union by size

It takes inverse Ackermann time (practically constant) for find.



The Optimizations

What if we combine the two optimizations?

- Path compression
- Union by size

It takes inverse Ackermann time (practically constant) for find.

Proof: 



The Applications (Kruskal’s algorithm)

Kruskal’s Algorithm finds a minimum spanning tree (tree connecting all nodes 
with the lowest total weight) on a graph.

Source: Wikipedia



The Applications (Kruskal’s algorithm)

How it works:

1. Sort all edges by lowest weight first
2. For each edge:

a. Check if the two nodes of the edge are connected
b. If not, add the edge to the tree



The Applications (Kruskal’s algorithm)

This is the next shortest 
edge but we don’t add it 
because nodes B and C 
are already connected 
(through E).



The Applications (Kruskal’s algorithm)

How do we quickly check if two nodes are connected?

With a disjoint set!

Two nodes are connected if they are in the same set.



The Applications (Kruskal’s algorithm)

Sets: 
- {A, B, D, F}
- {C, E}



The Applications (Kruskal’s algorithm)

Sets: 
- {A, B, D, F}
- {C, E}

Sets: 
- {A, B, D, F, C, E}



The Applications (Kruskal’s algorithm)

Sort edges by lowest 
weight first.

Add edge to tree only if 
the nodes aren’t already 
connected.



The End



Resources

- Problems: Minimum spanning tree
- https://www.hackerrank.com/challenges/kruskalmstrsub/problem
- https://orac2.info/problem/aiio08trains/
- https://orac2.info/problem/aiio13basmas/

- Problems: Disjoint set
- https://dmoj.ca/problem/coci10c7p5

- Applications:
- Kruskal’s algorithm
- Hindley-Milner type inference

https://www.hackerrank.com/challenges/kruskalmstrsub/problem
https://orac2.info/problem/aiio08trains/
https://orac2.info/problem/aiio13basmas/
https://dmoj.ca/problem/coci10c7p5


https://forms.gle/n1xKtBaxQp69fAsH6

https://forms.gle/n1xKtBaxQp69fAsH6

