
Programming Workshop #2
Graph Theory and Lowest Common Ancestors

Patrick Moore and Ryan Ong

CPMSOCToday’s Workshop

1 A refresher on Rooted Trees

2 Lowest Common Ancestor (LCA)

3 Solving LCA with Binary Lifting and Jump Pointers

4 Tree Path Length

5 Problem - Joining Couples

6 Problem - USACO 262144

7 Wrap up

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 1 / 14

CPMSOCRooted Tree Refresher

Many organizations are hierarchical in nature, such as business and our university. A
simple example would be:

A school will have multiple departments, and each departments will have multiple
sub-departments.
Google will have a CEO, people who manage countries and divisions, with each
person working under someone else (Except the CEO)

We can represent these people as nodes in a graph, and the hierarchical relationship
between them as directed edges between superiors and the workers they manage.

This representation might not seem immediately useful, but it allows us to apply a more
mathematical approach to problems since we can observe different properties of that
graph.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 2 / 14

CPMSOCRooted Tree Refresher

A Couple important bits of Tree Terminology which we will be using throughout this
workshop. These are:

The Root: The node at the top of the tree
Parents vs Children: The nodes directly above and below a node
Ancestors: All the nodes directly above a node
Subtree: All the nodes directly below a node
Height/Depth: The distance of a node frem the root (the root’s depth is generally
defined to be 0)

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 3 / 14

CPMSOCBinary Trees

In computer science, the binary tree is a widely used abstract data type. A binary tree is
made up of a finite set of nodes, each of which has

an element and,
at most two children.

The 2-child property of binary trees generally provides a nice balance between tree height
and width.

One of the example would be BST (binary search tree). Each node is either be empty or
two sub-BST node satisfy property that:

the element stored in sub-tree in the RHS of root is always greater or equal to root
the element stored in sub-tree in the LHS of root is always less than the root.

With BST, we can search, insert, with O(log n). As above, we know that binary tree is a
great data type, and it has many real world application such as organising data as the
above case.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 4 / 14

CPMSOCLowest Common Ancestor (LCA)

Definition

The Lowest Common Ancestor (LCA) of two nodes, a and b, in a tree with a root, R,
is the node that is an ancestor of both a and b which is furthest from R.

There are a couple alternate definitions to the "furthest from R" condition. A couple of
these are:

The node that is the deepest (has the greatest height).
The node that is closest to the a and b.

There are many nice uses of efficient LCA algorithms, particularly in fields like networking.

There are many algorithms to calculate LCA under different conditions, some of which are
very complicated. We will be investigating the simplest way to solve LCA in O(log(N)) per
query.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 5 / 14

CPMSOCLowest Common Ancestor (LCA)

Definition

The Lowest Common Ancestor (LCA) of two nodes, a and b, in a tree with a root, R,
is the node that is an ancestor of both a and b which is furthest from R.

There are a couple alternate definitions to the "furthest from R" condition. A couple of
these are:

The node that is the deepest (has the greatest height).
The node that is closest to the a and b.

There are many nice uses of efficient LCA algorithms, particularly in fields like networking.

There are many algorithms to calculate LCA under different conditions, some of which are
very complicated. We will be investigating the simplest way to solve LCA in O(log(N)) per
query.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 5 / 14

CPMSOCLowest Common Ancestor (LCA)

Definition

The Lowest Common Ancestor (LCA) of two nodes, a and b, in a tree with a root, R,
is the node that is an ancestor of both a and b which is furthest from R.

There are a couple alternate definitions to the "furthest from R" condition. A couple of
these are:

The node that is the deepest (has the greatest height).
The node that is closest to the a and b.

There are many nice uses of efficient LCA algorithms, particularly in fields like networking.

There are many algorithms to calculate LCA under different conditions, some of which are
very complicated. We will be investigating the simplest way to solve LCA in O(log(N)) per
query.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 5 / 14

CPMSOCBinary Lifting

Suppose that we have been asked a query of two nodes, a and b, and we want to find the
LCA of a and b. One algorithm to do so would be to:

Pre-calculate each node’s depth in the tree
For each query:

Move the lower of the query nodes upwards to the height of the higher one
Simultaneously move the query nodes up one step at a time until they merge. The node
they merge on is the LCA.

This algorithm works, but takes O(N) operations per query, since we are moving upwards
one node at a time. However, we have struck a useful idea, which is to move the nodes
upwards until they merge.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 6 / 14

CPMSOCBinary Lifting

Suppose that we have been asked a query of two nodes, a and b, and we want to find the
LCA of a and b. One algorithm to do so would be to:

Pre-calculate each node’s depth in the tree
For each query:

Move the lower of the query nodes upwards to the height of the higher one
Simultaneously move the query nodes up one step at a time until they merge. The node
they merge on is the LCA.

This algorithm works, but takes O(N) operations per query, since we are moving upwards
one node at a time. However, we have struck a useful idea, which is to move the nodes
upwards until they merge.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 6 / 14

CPMSOCBinary Lifting

We will continue on our idea of moving upwards until the two nodes merge. However, we
will optimise the slow process of inching upwards by taking larger leaps at a time, and
hopefully take less leaps by doing so.

We are provided with each node’s direct parent, but we will expand this to include every
node’s 2K -th parent, for every K between 1 and log2(N). These are the jump pointers.

Creating Jump Pointers: Using a 2D array, start with K = 1, iterate to K = 20, and apply
the formula

jump[node][k] = jump[jump[node][k-1]][k-1]

This can be interpreted as jumping 2K−1 parents, then jumping 2K−1 parents again, for a
total of 2K−1 + 2K−1 = 2K jumps.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 7 / 14

CPMSOCBinary Lifting

We will continue on our idea of moving upwards until the two nodes merge. However, we
will optimise the slow process of inching upwards by taking larger leaps at a time, and
hopefully take less leaps by doing so.

We are provided with each node’s direct parent, but we will expand this to include every
node’s 2K -th parent, for every K between 1 and log2(N). These are the jump pointers.

Creating Jump Pointers: Using a 2D array, start with K = 1, iterate to K = 20, and apply
the formula

jump[node][k] = jump[jump[node][k-1]][k-1]

This can be interpreted as jumping 2K−1 parents, then jumping 2K−1 parents again, for a
total of 2K−1 + 2K−1 = 2K jumps.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 7 / 14

CPMSOCBinary Lifting

Applying Jump Pointers: We apply a similar process as before, where we move the
lower node upwards until it is at the same depth as the higher node. We try to make the
largest jumps first (i.e. start with K = 20) and work towards the smallest jumps.

If the height after the jump doesn’t go too high, move it upwards. This ensures that we
move them together up without going any higher.

Now that they are at the same height, we have a common measure of ancestry between
the two nodes. Hence, we can move them up simultaneously. Apply the same process of
starting with K = 20 and working down to K = 0. If the jumps would not merge the two
query nodes, then it is safe to take.

Since we have been careful to not go too far, a and b will be one node below the LCA.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 8 / 14

CPMSOCBinary Lifting

Applying Jump Pointers: We apply a similar process as before, where we move the
lower node upwards until it is at the same depth as the higher node. We try to make the
largest jumps first (i.e. start with K = 20) and work towards the smallest jumps.

If the height after the jump doesn’t go too high, move it upwards. This ensures that we
move them together up without going any higher.

Now that they are at the same height, we have a common measure of ancestry between
the two nodes. Hence, we can move them up simultaneously. Apply the same process of
starting with K = 20 and working down to K = 0. If the jumps would not merge the two
query nodes, then it is safe to take.

Since we have been careful to not go too far, a and b will be one node below the LCA.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 8 / 14

CPMSOCTree Path Length

There is an easy way to calculate the minimum distance between any two nodes, a and b,
in a rooted tree, if you know the depth of every node.

Since we should not need to travel any higher than you need to, we should go via the
LCA. The path should be from a -> LCA(a, b) -> b.

(depth[a]−depth[LCA])+(depth[b]−depth[LCA]) = depth[a] + depth[b] - 2*depth[LCA]
(1)

This is a surprise tool that may help you later.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 9 / 14

CPMSOCProblem - Joining Couples

You are given a graph with N nodes where all nodes have one outgoing edge. You must
answer queries of two nodes, a and b. For each query, you must return the minimum
number of edges needed to bring a and b together.

N <= 100,000 Q <= 100,000

Observations:
What is interesting about the structure of the graph?
Can we split the problem into cases where the query nodes are in the same sections
of the graph?
Are there any edge cases where it is impossible for two nodes to meet up?

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 10 / 14

CPMSOCProblem - Joining Couples

You are given a graph with N nodes where all nodes have one outgoing edge. You must
answer queries of two nodes, a and b. For each query, you must return the minimum
number of edges needed to bring a and b together.

N <= 100,000 Q <= 100,000

Observations:
What is interesting about the structure of the graph?

Can we split the problem into cases where the query nodes are in the same sections
of the graph?
Are there any edge cases where it is impossible for two nodes to meet up?

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 10 / 14

CPMSOCProblem - Joining Couples

You are given a graph with N nodes where all nodes have one outgoing edge. You must
answer queries of two nodes, a and b. For each query, you must return the minimum
number of edges needed to bring a and b together.

N <= 100,000 Q <= 100,000

Observations:
What is interesting about the structure of the graph?
Can we split the problem into cases where the query nodes are in the same sections
of the graph?

Are there any edge cases where it is impossible for two nodes to meet up?

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 10 / 14

CPMSOCProblem - Joining Couples

You are given a graph with N nodes where all nodes have one outgoing edge. You must
answer queries of two nodes, a and b. For each query, you must return the minimum
number of edges needed to bring a and b together.

N <= 100,000 Q <= 100,000

Observations:
What is interesting about the structure of the graph?
Can we split the problem into cases where the query nodes are in the same sections
of the graph?
Are there any edge cases where it is impossible for two nodes to meet up?

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 10 / 14

CPMSOCProblem - USACO 262144

https://vjudge.net/problem/HYSBZ-4576
Bessie likes downloading games to play on her cell phone, even though she does find the
small touch screen rather cumbersome to use with her large hooves.
She is particularly intrigued by the current game she is playing. The game starts with a
sequence of N positive integers (2 ≤ N ≤ 262, 144), each in the range 1...40. In one
move, Bessie can take two adjacent numbers with equal values and replace them a single
number of value one greater (e.g., she might replace two adjacent 7s with an 8). The goal
is to maximize the value of the largest number present in the sequence at the end of the
game. Please help Bessie score as highly as possible!
Sample Input
4
1 1 1 2
Sample Output
3

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 11 / 14

https://vjudge.net/problem/HYSBZ-4576

CPMSOCSolution

Let dp[L][score] = R if the values from L..R can be combined into that particular score.
If its not possible, dp[L][score] = −1

Jump pointers!
dp[L][score + 1] = dp[dp[L][score]][score]

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 12 / 14

CPMSOCAttendance

https://forms.gle/V2RauagTBS942KmN6

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 13 / 14

https://forms.gle/V2RauagTBS942KmN6

CPMSOCWrap up

Problems:
Submit to Joining Couples at
https://www.beecrowd.com.br/judge/es/problems/view/1302?origem=1
Check out a guide to Binary Lifting at
https://usaco.guide/plat/binary-jump?lang=cppusaco
Check out Tarjan’s Offline LCA Algorithm (it solves LCA in essentially constant time if
you know all the queries in advance :0)

A reminder about the competitive maths workshops that run on Wednesdays, 12-2 in
Week 9.

Patrick Moore and Ryan Ong Programming Workshop #2 05/04/2022 14 / 14

https://www.beecrowd.com.br/judge/es/problems/view/1302?origem=1
https://usaco.guide/plat/binary-jump?lang=cpp##usaco

	A refresher on Rooted Trees
	Lowest Common Ancestor (LCA)
	Solving LCA with Binary Lifting and Jump Pointers
	Tree Path Length
	Problem - Joining Couples
	Problem - USACO 262144
	Wrap up

