

Competitive Programming and Mathematics Society

Programming Workshop #4 The Problem Solving Process

Angus Ritossa

1 Problem: Swappable

You are given an array $A = \{A_1, ..., A_N\}$ of integers.

You are given an array $A = \{A_1, ..., A_N\}$ of integers.

You must count the number of pairs (i, j) where i < j and $A_i \neq A_j$.

You are given an array $A = \{A_1, ..., A_N\}$ of integers.

You must count the number of pairs (i, j) where i < j and $A_i \neq A_j$.

Constraints:

- $\ \ \, \blacksquare \ \, 2\leq N\leq 300\,000.$
- $\blacksquare \ 1 \le A_i \le 1\,000\,000\,000.$

You are given an array $A = \{A_1, ..., A_N\}$ of integers.

You must count the number of pairs (i, j) where i < j and $A_i \neq A_j$.

Constraints:

- $2 \le N \le 300\,000.$
- $\blacksquare \ 1 \le A_i \le 1\,000\,000\,000.$

Sample Input:

3 1 7 1

You are given an array $A = \{A_1, ..., A_N\}$ of integers.

You must count the number of pairs (i, j) where i < j and $A_i \neq A_j$.

Constraints:

- $2 \le N \le 300\,000.$
- $1 \le A_i \le 1\,000\,000\,000$.

Sample Input:

3 1 7 1

Sample Output:

2

$O(N^2)$ Solution

CLUBS

• We have two nested for loops, and consider each pair (i, j) individually.

$O(N^2)$ Solution

• We have two nested for loops, and consider each pair (i, j) individually.

This is too slow to solve the problem, as $N^2 = 300\,000^2 = 90\,000\,000\,000$.

• We will instead count the number of pairs (i, j) where $A_i = A_j$ and i < j.

- We will instead count the number of pairs (i, j) where $A_i = A_j$ and i < j.
- If this count is x, then the answer to the original problem is $\frac{N(N-1)}{2} x$.

- We will instead count the number of pairs (i, j) where $A_i = A_j$ and i < j.
- If this count is x, then the answer to the original problem is $\frac{N(N-1)}{2} x$.
- Define c_j to be the number of $A_i = j$. We have that $x = \sum_j \frac{c_j(c_j-1)}{2}$.

- We will instead count the number of pairs (i, j) where $A_i = A_j$ and i < j.
- If this count is x, then the answer to the original problem is $\frac{N(N-1)}{2} x$.
- Define c_j to be the number of $A_i = j$. We have that $x = \sum_j \frac{c_j(c_j-1)}{2}$.
- To find c_j for each j, we sort the array and count the ranges of values which are the same.

- We will instead count the number of pairs (i, j) where $A_i = A_j$ and i < j.
- If this count is x, then the answer to the original problem is $\frac{N(N-1)}{2} x$.
- Define c_j to be the number of $A_i = j$. We have that $x = \sum_j \frac{c_j(c_j-1)}{2}$.
- To find c_j for each j, we sort the array and count the ranges of values which are the same.
- The complexity of sort is $O(N \log N)$, and the complexity of the rest of the procedure is O(N). This gives an overall complexity of $O(N \log N)$, which is fast enough.

