* Competitive
< > Programming and
Mathematics

Society

Programming Workshop #3
Binary Search

Jonathan Lam




Today’s Workshop

Today’s Workshop

Quick Refresher on Binary Search
Binary Search Implementation
Binary Search Implementation

Binary Search on Functions

Example

|

Summary

Jonathan Lam Programming Workshop #3

2 cpmsoc

1/04/2021 1/18



Quick Refresher on Binary Search P cpmsoc

m Simple algorithm to find an item in a sorted array
m The algorithm:

m The search maintains a search space in the array, which initially contains all the
elements

m At each step, check the middle element of the active region.

m [f this is the target element, we are done.

m Otherwise, search recursively on the left or right half of the middle element (depending
on whether it is above or below the target element).

m Time complexity: O(log n)
m Each step reduces the size of the search space by a half.
m The implementation is notorious for being error prone and off-by-one errors.

m There are built in functions: ¢ has bsearch and C++ <algorithm> has
binary_search, lower_bound and upper_bound.

Jonathan Lam Programming Workshop #3 1/04/2021 2/18



Example on an array < cPmsoc

Searching for 7

Jonathan Lam Programming Workshop #3 1/04/2021 3/18



Example on an array < cPmsoc

Searching for 7

Jonathan Lam Programming Workshop #3 1/04/2021 4/18



Example on an array < cPmsoc

Searching for 7

Jonathan Lam Programming Workshop #3 1/04/2021 5/18



Example on an array < cPmsoc

Searching for 7

[l

Jonathan Lam Programming Workshop #3 1/04/2021 6/18



Implementation

#include <cstdio>

int main() {
int search val = 7;
int arr[] = {1, 1, 2, 5, 7, 9, 12,
int 1 = -1;

int r = 1000000;
while (1 < r-1) {
int mid = (l+r)/2;
int mid val = arr[mid];
if (mid_val >= search_val) r
else 1

}
printf("sd\n", r);
}

// The same as stdio.h,

gives printf/scanf

2 cpmsoc

There are many other ways of implementing binary search, although this is the one | was
taught and the one | prefer. Also it’s probably better to use a loop rather than recursion to

avoid the overhead.

Jonathan Lam

Programming Workshop #3

1/04/2021 7/18



Implementation 2 cPMsoc

int 1 = 0, r = n-1;
while (1 <= r) {
int mid = (a+b)/2;
if (array[mid] == search_val) {
// search_val found at index mid
}
if (array[mid] > x) r = mid-1;
else 1 = midtl;

Jonathan Lam Programming Workshop #3 1/04/2021 8/



Binary Search on Functions P cPmsoc

We have seen so far binary search applied to static sorted arrays. However, binary search
can also be applied in non-obvious ways.
m Letbool canDo (int x) be a boolean monotone function.
For example,
x\o 1 2 3 4 ... k-1 k k+1 k+2
canDo(x)‘O o 0o 00 -- 0 1 1 1

B So canDo (x) is false for x < k and true for x > k.

m We can then binary search for the value of k.
m Of course, the function can also go from true to false instead of false to true.

Jonathan Lam Programming Workshop #3 1/04/2021 9/18



Implementation - Binary Search on Function&® cpmsoc

#include <cstdio> // The same as stdio.h, gives printf/scanf

bool canDo(int A) {
return A >= 12;

}

int main() {
int 1 = -1;
int r = 1000000;
while (1 < r-1) |

int mid = (l+r)/2;
if (canDo(mid)) r = m;
else 1 =m
}
printf("sd\n", r);

Jonathan Lam Programming Workshop #3 1/04/2021 10/18



Example - Giants < cPMsoc

Problem Statement:

Your army consists of a line of N giants, each with a certain height. You must designate
precisely L < N of them to be leaders. Leaders must be spaced out across the line such
that every pair of leaders must have at least K > 0 giants standing between them.

Find the maximum height of the shortest leader among all valid choices of L leaders.

Input:
First line 3 integers, N, L and K. The second line will contain N integers, H;, the height of
the ith leader.

Output:
A single integer with the maximum height of the shortest leader among all valid choices of
L leaders.

Jonathan Lam Programming Workshop #3 1/04/2021 11/18



Example - Giants ¥ cpMsoc
Suppose N=10,L =3, K=2,H=[1,10,4,2,3,7,12,8,7,2].

We want to choose 3 leaders out of 10 soldiers, such that there are at least 2 giants in
between each leader.

Optimal choice: Pick the leaders with heights 10, 7 and 7.

Jonathan Lam Programming Workshop #3 1/04/2021 12/18



Example - Giants < cPMsoc

m It's worth trying to attempt this with a brute-force/greedy/DP technique to appreciate
why this problem is tricky.

m The question did not give constraints on N, L or K, although suppose they are
sufficiently large enough so that a brute force solution is not practical.

m We need another plan. ..

m Binary search is very useful for problems that ask you to find the ‘max of the min’ or
the ‘min of the max’ of something.

m We will need to split the problem into two variants: the decision problem and the
optimisation problem.

m Typically the decision problem is a lot easier than the optimisation problem.

Jonathan Lam Programming Workshop #3 1/04/2021 13/18



Example - Giants < cPMsoc

m Define the decision problem:
canDo (T) : Does there exist some valid choice of leaders satisfying the constraints
whose shortest leader has height at least T?

m The decision problem is a boolean function (either there exists a possible
configuration, or not)
m It can be solved in O(N) time by a straight-forward greedy algorithm.
Let Leount = 0. This variable will store the amount of giants that we have selected to be
leaders so far.
Start off with the first element in H where H; > T.
Move to Hi, k.1 and check if its value > T.

| If itis, choose this giant as our soldier, and increment Leount. Move to the next giant K places
down and repeat the above check.
B Else, move to the next soldier 1 place down and repeat the above check

Check if Legunt > L.

Jonathan Lam Programming Workshop #3 1/04/2021 14/18



Example - Giants < cPMsoc

m Note: We define it to be at least T (rather than having the shortest giant have height
exactly T). This makes it monotone.
m That is, the function looks like
1111 ... 1110000
m This makes intuitive sense as lower values of T allow more giants to be eligible to
become leaders, so the required positions for leaders could be filled by more available
‘qualified’ giants.
m And as we increase T, the number of eligible giants decreases, decreasing the available
pool of possible leaders.
m Eventually, we will reach a point where we will run out of leaders to meet the criteria.
m Then the optimisation problem is asking for the largest T such that canDo (T) is true.
m We can then just perform a binary search on T.
m T are the heights of the soldiers, so we’ll need a sorted list of the heights.
m Create a sorted copy of H, and call this H’. This will take O(Nlog N) time.
m Binary search on the values in H'. This will take O(log N) time.
m This takes O(Nlog N) time.

Jonathan Lam Programming Workshop #3 1/04/2021 15/18



Example - Giants < cPMsoc

m For example, with
H=11,10,4,2,3,7,12,8,7,2]
we have
H =1[1,2,2,3,4,7,7,8,10,12]
m Is it possible for 4 to be the lower bound (but not necessarily the minimum height) of
the giants? We can select 10, 7, 8. So yes.

m Is it possible for 8 to be the lower bound? Select the giants with height 10, 12, and ...
there’s no more giants. So it is not possible.

m Is it possible for 7 to be the lower bound? We can select 10, 7, 7. So yes.
m Thus, binary search gives us the answer of T = 7.
m Note binary search saved us from having to check all the values in H'.

Jonathan Lam Programming Workshop #3 1/04/2021 16/18



Summary 2 cPMsoc

m Binary search can be surprisingly powerful when searching on non-obvious functions.

m Some questions can be solved by binary searching the answer and running a
simulation for each of the possible answers to see if some activity is possible (the
decision problem)

m Think about using binary search when you are asked to find (along the lines of) the
largest/smallest x such that f(x) is less than/greater than/equal to/. . . y.

m Other applications include finding zeroes of a function (interval bisection method).

Jonathan Lam Programming Workshop #3 1/04/2021 17/18



Problems P cPmsoc

Jonathan Lam Programming Workshop #3 1/04/2021 18/18



	Today's Workshop
	Quick Refresher on Binary Search
	Binary Search Implementation
	Binary Search Implementation
	Binary Search on Functions
	Example
	Summary

