
Programming Workshop #3
Binary Search

Jonathan Lam



CPMSOCToday’s Workshop

1 Today’s Workshop

2 Quick Refresher on Binary Search

3 Binary Search Implementation

4 Binary Search Implementation

5 Binary Search on Functions

6 Example

7 Summary

Jonathan Lam Programming Workshop #3 1/04/2021 1 / 18



CPMSOCQuick Refresher on Binary Search

Simple algorithm to find an item in a sorted array
The algorithm:

The search maintains a search space in the array, which initially contains all the
elements
At each step, check the middle element of the active region.
If this is the target element, we are done.
Otherwise, search recursively on the left or right half of the middle element (depending
on whether it is above or below the target element).

Time complexity: O(log n)
Each step reduces the size of the search space by a half.

The implementation is notorious for being error prone and off-by-one errors.
There are built in functions: C has bsearch and C++ <algorithm> has
binary_search, lower_bound and upper_bound.

Jonathan Lam Programming Workshop #3 1/04/2021 2 / 18



CPMSOCExample on an array

Searching for 7

1 1 2 5 7 9 12 13

Jonathan Lam Programming Workshop #3 1/04/2021 3 / 18



CPMSOCExample on an array

Searching for 7

1 1 2 5 7 9 12 13

Jonathan Lam Programming Workshop #3 1/04/2021 4 / 18



CPMSOCExample on an array

Searching for 7

1 1 2 5 7 9 12 13

Jonathan Lam Programming Workshop #3 1/04/2021 5 / 18



CPMSOCExample on an array

Searching for 7

1 1 2 5 7 9 12 13

Jonathan Lam Programming Workshop #3 1/04/2021 6 / 18



CPMSOCImplementation

#include <cstdio> // The same as stdio.h, gives printf/scanf

int main() {
int search_val = 7;
int arr[] = {1, 1, 2, 5, 7, 9, 12, 13};
int l = -1;
int r = 1000000;
while (l < r-1) {

int mid = (l+r)/2;
int mid_val = arr[mid];
if (mid_val >= search_val) r = m;
else l = m;

}
printf("%d\n", r);

}

There are many other ways of implementing binary search, although this is the one I was
taught and the one I prefer. Also it’s probably better to use a loop rather than recursion to
avoid the overhead.

Jonathan Lam Programming Workshop #3 1/04/2021 7 / 18



CPMSOCImplementation

int l = 0, r = n-1;
while (l <= r) {

int mid = (a+b)/2;
if (array[mid] == search_val) {

// search_val found at index mid
}
if (array[mid] > x) r = mid-1;
else l = mid+1;

}

Jonathan Lam Programming Workshop #3 1/04/2021 8 / 18



CPMSOCBinary Search on Functions

We have seen so far binary search applied to static sorted arrays. However, binary search
can also be applied in non-obvious ways.

Let bool canDo(int x) be a boolean monotone function.
For example,

x 0 1 2 3 4 · · · k − 1 k k + 1 k + 2 · · ·
canDo(x) 0 0 0 0 0 · · · 0 1 1 1 · · ·

So canDo(x) is false for x < k and true for x ≥ k .
We can then binary search for the value of k .
Of course, the function can also go from true to false instead of false to true.

Jonathan Lam Programming Workshop #3 1/04/2021 9 / 18



CPMSOCImplementation - Binary Search on Functions

#include <cstdio> // The same as stdio.h, gives printf/scanf

bool canDo(int A) {
return A >= 12;

}

int main() {
int l = -1;
int r = 1000000;
while (l < r-1) {

int mid = (l+r)/2;
if (canDo(mid)) r = m;
else l = m;

}
printf("%d\n", r);

}

Jonathan Lam Programming Workshop #3 1/04/2021 10 / 18



CPMSOCExample - Giants

Problem Statement:
Your army consists of a line of N giants, each with a certain height. You must designate
precisely L ≤ N of them to be leaders. Leaders must be spaced out across the line such
that every pair of leaders must have at least K ≥ 0 giants standing between them.

Find the maximum height of the shortest leader among all valid choices of L leaders.

Input:
First line 3 integers, N, L and K . The second line will contain N integers, Hi , the height of
the i th leader.

Output:
A single integer with the maximum height of the shortest leader among all valid choices of
L leaders.

Jonathan Lam Programming Workshop #3 1/04/2021 11 / 18



CPMSOCExample - Giants

Suppose N = 10, L = 3, K = 2, H = [1,10,4,2,3,7,12,8,7,2].

We want to choose 3 leaders out of 10 soldiers, such that there are at least 2 giants in
between each leader.

Optimal choice: Pick the leaders with heights 10, 7 and 7.

Jonathan Lam Programming Workshop #3 1/04/2021 12 / 18



CPMSOCExample - Giants

It’s worth trying to attempt this with a brute-force/greedy/DP technique to appreciate
why this problem is tricky.
The question did not give constraints on N, L or K , although suppose they are
sufficiently large enough so that a brute force solution is not practical.
We need another plan. . .
Binary search is very useful for problems that ask you to find the ‘max of the min’ or
the ‘min of the max’ of something.
We will need to split the problem into two variants: the decision problem and the
optimisation problem.
Typically the decision problem is a lot easier than the optimisation problem.

Jonathan Lam Programming Workshop #3 1/04/2021 13 / 18



CPMSOCExample - Giants

Define the decision problem:
canDo(T): Does there exist some valid choice of leaders satisfying the constraints
whose shortest leader has height at least T ?
The decision problem is a boolean function (either there exists a possible
configuration, or not)
It can be solved in O(N) time by a straight-forward greedy algorithm.

1 Let Lcount = 0. This variable will store the amount of giants that we have selected to be
leaders so far.

2 Start off with the first element in H where Hi ≥ T .
3 Move to Hi+K+1 and check if its value ≥ T .

If it is, choose this giant as our soldier, and increment Lcount. Move to the next giant K places
down and repeat the above check.
Else, move to the next soldier 1 place down and repeat the above check

4 Check if Lcount ≥ L.

Jonathan Lam Programming Workshop #3 1/04/2021 14 / 18



CPMSOCExample - Giants

Note: We define it to be at least T (rather than having the shortest giant have height
exactly T ). This makes it monotone.

That is, the function looks like
1 1 1 1 ... 1 1 1 0 0 0 0 ...

This makes intuitive sense as lower values of T allow more giants to be eligible to
become leaders, so the required positions for leaders could be filled by more available
‘qualified’ giants.
And as we increase T , the number of eligible giants decreases, decreasing the available
pool of possible leaders.
Eventually, we will reach a point where we will run out of leaders to meet the criteria.

Then the optimisation problem is asking for the largest T such that canDo(T) is true.
We can then just perform a binary search on T .

T are the heights of the soldiers, so we’ll need a sorted list of the heights.
Create a sorted copy of H, and call this H ′. This will take O(N log N) time.
Binary search on the values in H ′. This will take O(log N) time.

This takes O(N log N) time.
Jonathan Lam Programming Workshop #3 1/04/2021 15 / 18



CPMSOCExample - Giants

For example, with
H = [1,10,4,2,3,7,12,8,7,2]

we have
H ′ = [1,2,2,3,4,7,7,8,10,12]

Is it possible for 4 to be the lower bound (but not necessarily the minimum height) of
the giants? We can select 10, 7, 8. So yes.
Is it possible for 8 to be the lower bound? Select the giants with height 10, 12, and ...
there’s no more giants. So it is not possible.
Is it possible for 7 to be the lower bound? We can select 10, 7, 7. So yes.
Thus, binary search gives us the answer of T = 7.
Note binary search saved us from having to check all the values in H ′.

Jonathan Lam Programming Workshop #3 1/04/2021 16 / 18



CPMSOCSummary

Binary search can be surprisingly powerful when searching on non-obvious functions.
Some questions can be solved by binary searching the answer and running a
simulation for each of the possible answers to see if some activity is possible (the
decision problem)
Think about using binary search when you are asked to find (along the lines of) the
largest/smallest x such that f (x) is less than/greater than/equal to/. . . y .
Other applications include finding zeroes of a function (interval bisection method).

Jonathan Lam Programming Workshop #3 1/04/2021 17 / 18



CPMSOCProblems

Jonathan Lam Programming Workshop #3 1/04/2021 18 / 18


	Today's Workshop
	Quick Refresher on Binary Search
	Binary Search Implementation
	Binary Search Implementation
	Binary Search on Functions
	Example
	Summary

