
Programming Workshop #1
Stack Hacks

Angus Ritossa

CPMSOCToday’s Workshop

1 Today’s Workshop

2 Quick intro/refresher of stacks

3 Problem: Bracket Matching

4 Problem: Sculpture II

5 Problem: Largest Rectangle Under Histogram
Subtask 1
Subtask 2
Sorted Stack
Full Solution

Angus Ritossa Programming Workshop #1 18/03/2021 1 / 30

CPMSOCWhat is a stack?

Simple data structure
Supports three operations

Add an item to the top of the stack
Remove an item from the top of the stack
View the item at the top of the stack

Each operation can be supported in O(1) time (e.g. with an array, or with a linked list)

Angus Ritossa Programming Workshop #1 18/03/2021 2 / 30

CPMSOCStacks in C++
#include <stack> // Include this to use std::stack
#include <cstdio> // The same as stdio.h, gives printf/scanf
using namespace std; // Allows us to type stack<int> instead of std::stack<int>
int main() {

stack<int> s; // Declares a stack called s
s.push(3); // Push 3 onto the stack
printf("top of stack: %d\n", s.top()); // prints 3
printf("size of stack %d\n", (int)s.size()); // prints 1
s.push(1);
s.push(2);
printf("top of stack: %d\n", s.top()); // prints 2
printf("size of stack %d\n", (int)s.size()); // prints 3
s.pop(); // Remove the top element from the stack
printf("top of stack: %d\n", s.top()); // prints 1
printf("size of stack %d\n", (int)s.size()); // prints 2
s.push(4);
printf("top of stack: %d\n", s.top()); // prints 4
printf("size of stack %d\n", (int)s.size()); // prints 3
s.pop();
printf("top of stack: %d\n", s.top()); // prints 1
printf("size of stack %d\n", (int)s.size()); // prints 2
s.pop();
printf("top of stack: %d\n", s.top()); // prints 3
printf("size of stack %d\n", (int)s.size()); // prints 1
s.pop();
printf("size of stack %d\n", (int)s.size()); // prints 0

}

Angus Ritossa Programming Workshop #1 18/03/2021 3 / 30

CPMSOCProblem: Bracket Matching

You are given a string consisting of ‘(’, ‘)’, ‘[’, ‘]’, ‘{’ and ‘}’. A bracket sequence is valid if
every opening bracket matches a closing bracket of the same type. More formally:

The empty string is a valid bracket sequence
If A is a valid bracket sequence, (A), [A] and {A} are all valid bracket sequences
If A and B are valid bracket sequences, AB is a valid bracket sequence

Determine whether the given bracket sequence is valid.
You are guaranteed that N ≤ 100 000, where N is the size of the bracket sequence.

Sample input 1: ([()()]{([]())})[]
Sample output 1: YES

Sample input 2: ([)]
Sample output 2: NO

Angus Ritossa Programming Workshop #1 18/03/2021 4 / 30

CPMSOCProblem: Bracket Matching

If a bracket sequence is valid, we should be able to find the match of each bracket
Informal observation: we assign each closing bracket to the closest available opening
bracket.
We can formalise this by processing the string one bracket at a time, and considering
what we should do with each bracket as we get it.

An opening bracket will match with some closing bracket in the future.
A closing bracket will match with the nearest unmatched opening bracket.
We can facilitate these with a stack. Push opening brackets onto a stack, and match
closing brackets with the top opening bracket on the stack.

Angus Ritossa Programming Workshop #1 18/03/2021 5 / 30

CPMSOCProblem: Bracket Matching

When might we get a NO result?
1 We match different types of brackets together
2 There is no unmatched opening bracket for a closing bracket (stack is empty when we

reach a closing bracket)
3 There are unmatched opening brackets at the end (stack is not empty at the end)

Time complexity? We do O(1) work for each of the N brackets, so its O(N) overall.

Angus Ritossa Programming Workshop #1 18/03/2021 6 / 30

CPMSOCProblem: Bracket Matching

#include <stack> // Include this to use std::stack
#include <cstdio> // The same as stdio.h, gives printf/scanf
#include <cstring> // The same as string.h, gives strlen
#include <cstdlib> // The same as stdlib.h, Gives exit
using namespace std;
#define MAXN 100010
char brackets[MAXN];
void NO() {

// Prints no and ends the program
printf("NO\n");
exit(0); // exit(0) terminates the program without any errors

}

Angus Ritossa Programming Workshop #1 18/03/2021 7 / 30

CPMSOCProblem: Bracket Matching

int main() {
scanf(" %s", brackets);
int n = strlen(brackets);
stack<char> s;
for (int i = 0; i < n; i++) {

if (brackets[i] == '(' || brackets[i] == '[' || brackets[i] == '{') {
s.push(brackets[i]);

} else {
if (s.empty()) {

NO(); // No opening bracket to match us with
} else if (brackets[i] == ')' && s.top() != '(') {

NO(); // Matched the wrong types of brackets together!
} else if (brackets[i] == ']' && s.top() != '[') {

NO(); // Matched the wrong types of brackets together!
} else if (brackets[i] == '}' && s.top() != '{') {

NO(); // Matched the wrong types of brackets together!
}
s.pop(); // Remove the opening bracket from the stack, as it is now matched

}
}
if (!s.empty()) {

NO(); // There are unmatched opening brackets!
}
printf("YES\n");

}

Angus Ritossa Programming Workshop #1 18/03/2021 8 / 30

CPMSOCProblem: Sculpture II

There are N LEGO blocks, which will create a structure on a line.

The i-th block is wi cm wide and hi cm tall. After ti seconds, i-th the block will magically
fall from the sky, with its right end ticm along the line (measured from the right). If a block
lands on top of another, it will stick to it.

What is the height of the highest point on the sculpture?

Angus Ritossa Programming Workshop #1 18/03/2021 9 / 30

CPMSOCProblem: Sculpture II

For example, imagine there are four blocks
1 The first block has ti = 1, wi = 3 and hi = 2.
2 The second block has ti = 2, wi = 2 and hi = 1.
3 The third block has ti = 3, wi = 2 and hi = 1.
4 The fourth block has ti = 5, wi = 1 and hi = 3.

The height of the sculpture is 4

Angus Ritossa Programming Workshop #1 18/03/2021 10 / 30

CPMSOCProblem: Sculpture II

Bounds
N ≤ 100 000
wi , ti ≤ 1 000 000 for all i
hi ≤ 1 000 for all i
ti < ti+1 (that is, the blocks are sorted by time, and times are unique)

Subtasks
1 All values ≤ 1 000
2 wi = wj and hi = hj for all i and j . That is, all blocks have the same dimensions.
3 Full

Source: Australian Informatics Olympiad 2016

Angus Ritossa Programming Workshop #1 18/03/2021 11 / 30

CPMSOCSculpture II: Solution

Observation: each block will sit atop at most one other block
In other words, when the i-th block is placed there is a single ‘stack’ of blocks which it
falls on top of
Consider this ‘stack’: does it have the properties of a stack?

When a new block is added, it is added to the top of the stack.
If the ti of the current block is larger than the tj + wj of the top of the stack, the new block
will not land on the old top of the stack, and so we should pop the top of the stack
A block in the middle of the stack will remain in the stack for at least as long as the block
on top of it does. Hence blocks are only removed from the top of the stack.

Angus Ritossa Programming Workshop #1 18/03/2021 12 / 30

CPMSOCSculpture II: Solution

This motivates the following solution
Process the blocks in order, keeping a stack. Maintain the current height of all the
blocks in the stack combined, and the highest stack we have seen so far.
When we reach a block i , pop the top of the stack j while ti ≥ tj + wj (that is, block i
will not land on top of block j)
Push block i onto the stack. Update the highest stack we have seen so far, if our
current stack exceeds the old highest.

Time complexity? We process each block once. For each block, we pop some number of
things off the stack, and then push one thing onto the stack. Because each block is
popped off the stack once throughout the entire solution, the overall complexity is O(N).

Angus Ritossa Programming Workshop #1 18/03/2021 13 / 30

CPMSOCSculpture II: Code

#include <stack> // Include this to use std::stack
#include <cstdio> // The same as stdio.h, gives printf/scanf
#include <algorithm> // Gives us std::max
using namespace std;
#define MAXN 100010
int n, t[MAXN], w[MAXN], h[MAXN];
int curr_hei; // the height of the current stack
int ans; // the height of the highest stack we have seen so far
stack<int> s; // will contain the indicies of the blocks on the current stack
int main() {

scanf("%d", &n);
for (int i = 0; i < n; i++) {

scanf("%d%d%d", &t[i], &w[i], &h[i]);

// this is the condition for popping from the solution slide
while (!s.empty() && t[i] >= t[s.top()]+w[s.top()]) {

curr_hei -= h[s.top()]; // we remove the block from the stack, so decrement the current stack height
s.pop();

}

curr_hei += h[i]; // we add the block to the stack, so increment the current stack height
ans = max(ans, curr_hei); // update the answer if our stack height is the highest so far
s.push(i);

}
printf("%d\n", ans);

}

Angus Ritossa Programming Workshop #1 18/03/2021 14 / 30

CPMSOCProblem: Rectangle Under Histogram

You are given a histogram (a shape consisting of a number of bars of equal widths but
various heights, which all have their base on the same line). You must find the area of the
largest axis-aligned rectangle contained within the histogram.

Angus Ritossa Programming Workshop #1 18/03/2021 15 / 30

CPMSOCProblem: Rectangle Under Histogram

Input
The first line consists of a single integer N, the number of bars.
The next N lines each contain hi , the height of the i-th bar.

Output: You must output a single integer: the area of the largest rectangle.
Constraints

N ≤ 100 000
hi ≤ 1 000 000 for all i

Subtasks
1 N ≤ 100
2 N ≤ 1 000
3 Full

Angus Ritossa Programming Workshop #1 18/03/2021 16 / 30

CPMSOCProblem: Rectangle Under Histogram

Sample Input
8
2 3 1 5 3 4 2 1

Sample Output
9

Explanation: this matches the diagram on the first slide

Angus Ritossa Programming Workshop #1 18/03/2021 17 / 30

CPMSOCSubtask 1: N ≤ 100

The bound on N allows an O(N3) solution
Observation: the optimal rectangle always has an edge along the bottom of the
histogram
Solution: we will consider all O(N2) ranges which could form the base of our
rectangle
In each of these ranges, find the smallest bar. This takes O(N) time.
The overall time complexity is O(N3)

Angus Ritossa Programming Workshop #1 18/03/2021 18 / 30

CPMSOCSubtask 1: N ≤ 100

// O(N^3) solution
#include <cstdio>
#include <algorithm>
using namespace std;
#define MAXN 100010
int n, hei[MAXN], ans;
int main() {

scanf("%d", &n);
for (int i = 0; i < n; i++) {

scanf("%d", &hei[i]);
}
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
// Consider the range [i, j]. We will find the height of the bar rectangle in this range
int mn = hei[i];
for (int k = i; k <= j; k++) {

mn = min(mn, hei[k]);
}
// Update maximum area, if this rectangle exceeds it
ans = max(ans, (j-i+1)*mn);

}
}
printf("%d\n", ans);

}

Angus Ritossa Programming Workshop #1 18/03/2021 19 / 30

CPMSOCSubtask 2: N ≤ 1 000

The bound on N allows an O(N2) solution
We can optimise the subtask 1 solution. In particular, we can optimise the O(N) step
where we find the smallest bar.
Observe that min(hi ,hi+1, ..., hj−1,hj) = min(min(hi ,hi+1, ..., hj−1),hj).
Consider each i (that is, the start of the range). For each i , we consider each j
starting at i and increasing to n.
As we increase j , we keep track of the smallest bar we have seen. This will
correspond to the smallest bar in the range [i , j].
We have two nested for loops, with a constant amount of work inside the loops.
Hence, the overall complexity is O(N2).

Angus Ritossa Programming Workshop #1 18/03/2021 20 / 30

CPMSOCSubtask 2: N ≤ 1 000

// O(N^2) solution
#include <cstdio>
#include <algorithm>
using namespace std;
#define MAXN 100010
int n, hei[MAXN], ans;
int main() {

scanf("%d", &n);
for (int i = 0; i < n; i++) {

scanf("%d", &hei[i]);
}
for (int i = 0; i < n; i++) {

int mn = hei[i];
for (int j = i; j < n; j++) {

mn = min(mn, hei[j]);
// Update maximum area, if this rectangle exceeds it
ans = max(ans, (j-i+1)*mn);

}
}
printf("%d\n", ans);

}

Angus Ritossa Programming Workshop #1 18/03/2021 21 / 30

CPMSOCHistogram: Going for full

We were able to optimise our O(N3) solution to an O(N2) solution because there
was an unnecessary inner loop.
In our O(N2) solution, we consider O(N2) ranges individually. As such, we cannot
just ‘optimise’ the existing solution, we must adopt a new strategy.

Angus Ritossa Programming Workshop #1 18/03/2021 22 / 30

CPMSOCHistogram: Going for full

Idea: in each range, it was the smallest bar which determined the height of the
rectangle. Instead of fixing the base of the rectangle, lets fix the smallest bar in it.

Angus Ritossa Programming Workshop #1 18/03/2021 23 / 30

CPMSOCHistogram: Going for full

New solution: for each i , assume it is the smallest bar in the rectangle.
We want to find the first bar to the left of bar i that is smaller than bar i (call this the
left-limiting bar). Do the same thing for the right.
We can find these in O(N) time with a simple loop, giving another O(N2) solution.

Angus Ritossa Programming Workshop #1 18/03/2021 24 / 30

CPMSOCSorted Stack

New problem: for each bar, find its left-limiting bar

The red bar will never be a left-limiting bar, as the green bar is to the right of it and
smaller than it.
The blue and purple bars could both be left-limiting bars.

Angus Ritossa Programming Workshop #1 18/03/2021 25 / 30

CPMSOCSorted Stack

Idea: process bars from left to right, and keep track of all bars which could be
left-limiting bars in the future.

Angus Ritossa Programming Workshop #1 18/03/2021 26 / 30

CPMSOCSorted Stack

Problem: for each bar, find its left-limiting bar
Solution: Process bars from left to right, and maintain a stack.
When we are processing some bar i , we pop the top of the stack while htop of stack ≥ hi .
The new top of the stack is the left-limiting bar. We then push i onto the stack.
Each bar is pushed and popped from the stack once, so the overall complexity is
O(N).

Angus Ritossa Programming Workshop #1 18/03/2021 27 / 30

CPMSOCSorted Stack: Code

// n and h are the input
// left_limit is the array which we will use to store the output
void find_left_limits(int n, int h[], int left_limit[]) {

stack<int> s; // Will contains indices of the bars on the sorted stack
for (int i = 0; i < n; i++) {

while (!s.empty() && h[s.top()] >= h[i]) { // Pop a bar if it can never again be a left-limiting bar
s.pop();

}
if (s.empty()) {

// The bar does not have a left limit
left_limit[i] = -1;

} else {
left_limit[i] = s.top();

}
s.push(i);

}
}

Angus Ritossa Programming Workshop #1 18/03/2021 28 / 30

CPMSOCHistogram: Full Solution

We will use the sorted stack technique to solve the problem
For each bar, we find the left and right limiting bars (we can use exactly the same
technique in reverse to find the right limiting bar)
It takes O(N) to find the left/right limiting bars, and O(N) to use these to find the
answer. Hence, the overall time complexity is O(N).

Angus Ritossa Programming Workshop #1 18/03/2021 29 / 30

CPMSOCHistogram: Code
#include <cstdio>
#include <algorithm> // Gives us reverse
using namespace std;
#define MAXN 100010
typedef long long ll; // The maximum possible answer is 10^5 * 10^6 = 10^11, so we need long longs
void find_left_limits(int n, int h[], int left_limit[]); // Omitted - see code from sorted stack slide
int n, hei[MAXN], left_limit[MAXN], right_limit[MAXN];
int main() {

scanf("%d", &n);
for (int i = 0; i < n; i++) {

scanf("%d", &hei[i]);
}
find_left_limits(n, hei, left_limit);
reverse(hei, hei+n); // Reverse the array
find_left_limits(n, hei, right_limit); // The right limits (in reverse order) are now stored in right_limit
reverse(hei, hei+n);
reverse(right_limit, right_limit+n);
for (int i = 0; i < n; i++) {

right_limit[i] = n-1-right_limit[i]; // Because we reversed the array, need to "reverse" every index
}
ll ans = 0;
for (int i = 0; i < n; i++) {

ll len = right_limit[i]-left_limit[i]-1; // The width of the rectangle with its lowest bar at bar i
ll area = len*(ll)hei[i];
ans = max(ans, area); // Check if we improve the answer

}
printf("%lld\n", ans);

}

Angus Ritossa Programming Workshop #1 18/03/2021 30 / 30

	Today's Workshop
	Quick intro/refresher of stacks
	Problem: Bracket Matching
	Problem: Sculpture II
	Problem: Largest Rectangle Under Histogram
	Subtask 1
	Subtask 2
	Sorted Stack
	Full Solution

