
ICPC Workshop 2
Dynamic Programming

Angus Ritossa and Isaiah Iliffe

Table of contents
1 Problem: Maximum Non-Adjacent Subarray Sum

Statement
Solution

2 Problem: Grid Walk
Statement
Solution

3 Problem: Knapsack
Statement
Solution

4 Problem: Palindromes
Statement
Solution

5 Lab: work on vjudge set

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 1 / 23

Maximum Non-Adjacent Subarray Sum
There is an array [a0, ..., aN−1] of integers.
You can select some of these integers, but they must not be adjacent.
What is the maximum sum you can select?

Sample Input 1
7
5 3 1 4 1 2 1

Sample Output 1
11

Explanation
5 3 1 4 1 2 1

Sample Input 2
5
-1 -2 3 2 -5

Sample Output 2
3

Explanation
-1 -2 3 2 -5

Constraints
N ≤ 200 000

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 2 / 23

Solution Ideas
We could try to tackle this with a greedy algorithm. For example, keep taking the
biggest value if it isn’t adjacent to something we have already taken.
This doesn’t work: consider the case 2 3 2

What about alternating (i.e. take every second element)?
Also doesn’t work, consider 5 1 1 5

There are many other solution ideas like these, and we can come up with breaking
cases for all of them - we need a different approach.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 3 / 23

Dynamic Programming
We can solve this problem using a technique called Dynamic Programming (DP).
The key aspect of DP is breaking down a problem into smaller subproblems which
are easy to solve.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 4 / 23

DP Solution
Let f(i) be the answer to the problem only considering the array [ai, ..., aN−1].
Example: 5 3 1 4 1 2 1

f(6) = 1: 5 3 1 4 1 2 1
f(5) = 2: 5 3 1 4 1 2 1
f(4) = 2: 5 3 1 4 1 2 1 or 5 3 1 4 1 2 1
f(3) = 6: 5 3 1 4 1 2 1
f(2) = 6: 5 3 1 4 1 2 1
f(1) = 9: 5 3 1 4 1 2 1
f(0) = 11: 5 3 1 4 1 2 1

By definition, f(0) is the answer to the problem

f(i) =

{
0 if i ≥ n

max(ai + f(i+ 2), f(i+ 1)) otherwise
(1)

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 5 / 23

Code
#include <algorithm>
#include <cstdio>
using namespace std;
#define MAXN 200010
int N, a[MAXN];
int f(int i) {

if (i >= N) return 0;
return max(a[i] + f(i+2), f(i+1));

}
int main() {

scanf("%d", &N);
for (int i = 0; i < N; i++) scanf("%d", &a[i]);
printf("%d\n", f(0));

}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 6 / 23

Time Complexity
What is the time complexity of this solution?
The function f(i) recursively calls f(i+1) and f(i+2), which leads to an exponential
time solution.
We can upper bound the time complexity by O(2n) (in fact, its O(1.618n), but the
exact value isn’t too important)
Each time we call f(i) for some fixed i it returns the same answer, so we can save
the answer (this is called memoisation). This avoids doing the same thing multiple
times and makes the complexity O(N).

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 7 / 23

O(N) Recursive DP
#include <algorithm>
#include <cstdio>
using namespace std;
#define MAXN 200010
int N, a[MAXN], memo[MAXN];
bool done[MAXN];
int f(int i) {

if (i >= N) return 0;
if (done[i]) return memo[i];
done[i] = true;
return memo[i] = max(a[i] + f(i+2), f(i+1));

}
int main() {

scanf("%d", &N);
for (int i = 0; i < N; i++) scanf("%d", &a[i]);
printf("%d\n", f(0));

}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 8 / 23

Recursion vs Iteration
The code so far has been recursive, but you can write a DP iteratively as well.
In most DP problems, recursive and iterative solutions both work and its a matter of
preference. There are a few cases where one is preferred over the other.
In problems where memory optimisations are needed, iterative is generally better
In problems where there are many unreachable states, recursive is generally better
because it will not visit these states.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 9 / 23

Iterative DP
#include <algorithm>
#include <cstdio>
using namespace std;
#define MAXN 200010
int N, a[MAXN], dp[MAXN];
int main() {

scanf("%d", &N);
for (int i = 0; i < N; i++) scanf("%d", &a[i]);
for (int i = N-1; i >= 0; i--) {

dp[i] = max(a[i] + dp[i+2], dp[i+1]);
}
printf("%d\n", dp[0]);

}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 10 / 23

Grid Walk
There is a N ×N grid of integers.
You start at the top-left, and wish to walk to the bottom right. You can only walk down and
right to an adjacent cell (not diagonal). The score of a walk is the sum of the values in all
the cells (including start and end). What is the maximum score of any walk from the
top-left to bottom right?

Sample Input
3
3 4 2
1 -1 1
1 6 4

Sample Output
16

Explanation
3
3 4 2
1 -1 1
1 6 4

Constraints N ≤ 2 000

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 11 / 23

Solution
We will use DP.
Let f(i, j) be the best path to the end (n− 1, n− 1) if we start at (i, j). The top-left is
cell (0, 0), so the answer is f(0, 0).

f(i, j) =

−∞ i ≥ N or j ≥ N

an−1,n−1 i = N − 1 and j = N − 1

ai,j +max(f(i+ 1, j), f(i, j + 1)) otherwise
(2)

The time complexity is O(N2), because there are O(N2) states each with O(1)
recurrence.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 12 / 23

#include <algorithm>
#include <cstdio>
using namespace std;
#define MAXN 2020
int N, a[MAXN][MAXN], memo[MAXN][MAXN], done[MAXN][MAXN];
int f(int i, int j) {

if (i >= N || j >= N) return -1e9;
if (i == N-1 && j == N-1) return a[i][j];
if (done[i][j]) return memo[i][j];
done[i][j] = true;
return memo[i][j] = a[i][j] + max(f(i+1, j), f(i, j+1));

}
int main() {

scanf("%d", &N);
for (int i = 0; i < N; i++) for (int j = 0; j < N; j++)

scanf("%d", &a[i][j]);
printf("%d\n", f(0, 0));

}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 13 / 23

Knapsack
You have N items, each with a weight wi and value vi.
Your backpack has a weight limit of W . What is the maximum value of items you can fit
into your backpack, without exceeding the weight limit?
Input format is N W on the first line, followed by N lines of the form wi vi.

Sample Input
4 10
4 3
3 2
6 3
2 2

Sample Output
7

Explanation
Take the first, second
and fourth items for a
total weight of
4 + 3+ 2 = 9 ≤ 10 and
value 3 + 2 + 2 = 7

Constraints N ≤ 2 000. W ≤ 5 000.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 14 / 23

Solution
Our DP state needs to consider the weight of the items, and which items we have
taken.
Let dp(i, w) be the maximum value of items if their total weight is w and we have only
selected items from item 0 to item i− 1.
We will use a forward-pushing dp. So far, we have used backwards dp (we calculate
the result of a state based on already calculated states). In a forwards dp, you update
the results of future states using current states. This only works for iterative DPs.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 15 / 23

Solution
Initially, every dp[i][w] is set to −∞, except dp[0][0] which is set to 0.
When we process a state, its value is correct. We update future states as follows

dp[i+ 1][w] = max(dp[i+ 1][w], dp[i][w]). This represents not adding item i to our
backpack.
dp[i+ 1][w + wi] = max(dp[i+ 1][w + wi], dp[i][w] + vi). This represents adding item i to
our backpack.

The answer is max(dp[N][0], dp[N][1], ..., dp[N][W]).
The time complexity is O(NW), because there are O(NW) states each with O(1)
recurrence.
We reduce the memory usage by storing dp[w] rather than dp[i][w]. This works
because dp[i+ 1][w] = max(dp[i+ 1][w], dp[i][w]). We need to iterate backwards
(from W − 1 to 0) in the inner loop to avoid taking an item twice.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 16 / 23

#include <algorithm>
#include <cstdio>
using namespace std;
#define MAXN 5010
int N, W, w[MAXN], v[MAXN], dp[MAXN], ans;
int main() {

scanf("%d%d", &N, &W);
for (int i = 0; i < N; i++) scanf("%d%d", &w[i], &v[i]);
for (int i = 0; i < N; i++) {
for (int weight = W-1; weight >= 0; weight--) {

if (weight+w[i] <= W) { // check we won't overflow the array
dp[weight+w[i]] = max(dp[weight+w[i]], dp[weight]+v[i]);

}
}

}
for (int weight = 0; weight <= W; weight++) ans = max(ans, dp[weight]);
printf("%d\n", ans);

}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 17 / 23

Palindromes
There is a string s = s1s2...sN .
You must answer Q queries. In each query, you are given two integers li and ri (li ≤ ri)
and must answer how many substrings sxsx+1...sy where li ≤ x ≤ y ≤ ri are palindromes
(a palindrome is the same forwards and backwards).

Sample Input
caaaba
5
1 1
1 4
2 3
4 6
4 5

Sample Output
1
7
3
4
2

Explanation
Fourth query: a (4, 4), b (5, 5), a (6, 6), aba (4, 6).

Constraints N ≤ 5 000. Q ≤ 1 000 000.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 18 / 23

Solution
First: for each substring, how do we know if its a palindrome?
A simple way is to check each substring on its own. The time complexity of this
O(N2)×O(N) = O(N3) which is too slow.
A faster way uses DP

is_palindrome(i, j) =

true i = j

si == sj i+ 1 = j

si == sj AND is_palindrome(i+ 1, j − 1) otherwise
(3)

This is O(N2), which is fast enough.

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 19 / 23

// include <algorithm>, <cstdio> and <cstring>
using namespace std;
#define MAXN 5010
char s[MAXN];
bool is_palindrome[MAXN][MAXN];
int dp[MAXN][MAXN], N, Q;
int main() {

scanf(" %s", s+1); // str+1 1-indexes the string
N = strlen(s+1);
// Calculate is_palindrome
// We need to process substrings in order of length
for (int len = 0; len < N; len++) {
for (int i = 1; i <= N-len; i++) {

int j = i+len;
if (!len) is_palindrome[i][i] = true;
else if (len == 1) is_palindrome[i][j] = s[i] == s[j];
else is_palindrome[i][j] = s[i] == s[j] && is_palindrome[i+1][j-1];

}
}
// TODO: Rest of the solution

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 20 / 23

Solution
Now, we will look at the actual problem - counting the number of palindromes in a
range.
O(N2) per query: use is_palindrome on every substring. This is too slow.
We can do a DP which utilises inclusion-exclusion. dp(i, j) is the number of
palindromes in the range (i, j).
dp(i, j) ={

0 j < i

is_palindrome(i, j) + dp(i+ 1, j) + dp(i, j − 1)− dp(i+ 1, j − 1) otherwise
(4)

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 21 / 23

// The first half of the code is on an earlier slide

// Calculate dp
// We need to process substrings in order of length
for (int len = 0; len < N; len++) {
for (int i = 1; i <= N-len; i++) {

int j = i+len;
dp[i][j] = is_palindrome[i][j] + dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1];

}
}

// Print answers to queries
scanf("%d", &Q);
for (int i = 0; i < Q; i++) {
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", dp[l][r]);

}
}

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 22 / 23

Lab
Join the vjudge group: https://vjudge.net/group/unswicpc
Go to the contest for this workshop
If you need help, or don’t know what to do, message me or Isaiah
A: A+B — solve this first if you haven’t used vjudge before
B: Frog 1 — a simple DP, similar to the subarray sum problem
C: Vacation — another DP problem, different to the problems from today
D: The least round way — similar to the grid problem from today, but with a twist
E: Antimatter — A harder DP problem
Photo — Extension Problem. Available here:
http://ceoi.inf.elte.hu/probarch/09/photo.pdf

Angus Ritossa and Isaiah Iliffe ICPC Workshop 2 27 July 2021 23 / 23

	Problem: Maximum Non-Adjacent Subarray Sum
	Statement
	Solution

	Problem: Grid Walk
	Statement
	Solution

	Problem: Knapsack
	Statement
	Solution

	Problem: Palindromes
	Statement
	Solution

	Lab: work on vjudge set

