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CPMSOCWelcome
We would like to thank everyone for coming, even if its just for the pizza :D
We are looking forward to expanding our activities from here onwards, if you have any
ideas for what you think we can do to satisfy your interests, please let us know!!
We do have a lot more planned for TERM 2! More Competitive Mathematics heading
your way...

CPMsoc Maths Mathematics Workshop 09/04/2025 2 / 26



CPMSOCAttendance form

CPMsoc Maths Mathematics Workshop 09/04/2025 3 / 26



CPMSOCOur tool kit
Independent variable acknowledgement, standard Product and Sum rules

Given 2 events whose outcomes are independent of one another, we have the the total
event outcomes is the product of the number of outcomes of both events.
Similarly, the given two complimentary disjoint sets of outcomes to the same event, we
take the total outcomes to that event to be the sum of the sets lengths.

Dependent variable cases
For events with a dependence on the outcomes of other events, the total event outcomes
can be counted as the sum of the partition of the events into independent groupings
e.g.: If A = {1, 2, ..., 10}, and B(a) = {x ∈ Z+ : x < a ∈ A}. The total quantity of
groupings of event outcomes {a ∈ A, b ∈ B} is given by

∑10
n=1 |B(n)|.
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CPMSOCPascal’s Triangle
Pascal’s triangle is an infinite pattern of numbers where each number is the sum of
the two numbers above it. For the following, we define the top row to be the 0th row.
Some notable properties include:

The nth row has n+ 1 items.
The nth row has a sum of 2n;
The numbers on the nth row are

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
(explained in a later slide).

Hence,
(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= 2n.

From definition, we also see that
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.

The second outermost diagonal(s) are the counting numbers whilst the third outermost
diagonal(s) are the triangular numbers.
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CPMSOCPascal’s Triangle - The Why
Consider an ant at the top of Pascal’s triangle. It can only descend, but can choose
to go either left or right. Each node is marked with how many paths can be taken to
reach it.
Let n to be the length of the path and k be the number of right paths taken.
Hence, the node which takes n paths to reach and requires k right paths has

(
n
k

)
paths.
Each outer node has 1 path going towards it and each inner node is also the sum of
the two nodes preceding it, satisfying the conditions for Pascal’s triangle.
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CPMSOCRepetition, Replacements and Order
For counting repeats of events, there are a couple considerations which change the
number of possible outcomes:

Replacements in counting: The same outcome can be chosen as much as possible
No replacements: The same outcome cannot be chosen twice
Ordered Counting: Order of events matter
Unordered Counting: Outcomes the same up to rearrangement of events

The choose/binomial coefficients
(
n
k

)
=

n!

k!(n− k)!
give the number of ways to select k

items from a set of n without replacement and without order.

Select k from n Ordered Unordered
Without replacement

(
n
k

)
· k!

(
n
k

)
With replacement nk

(
k+n−1

k

)
Table: Number of ways to select k items from a set of n for cases with and without order and
replacement.
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CPMSOCCounting Distributions
The stars-and-bars/sticks-and-balls principle to illuminate ways to distribute objects.

Finding ways to distribute n balls into k groups is equivalent to finding ways to draw
k − 1 partitions between the possible n− 1 gaps of the balls:

(
n−1
k−1

)

As an example, the number of ways to put n = 8 balls in k = 3 buckets is equivalent to the
number of ways to make 2 = 3− 1 partitions in 7 = 8− 1 places.

Hence there are
(
7
2

)
= 21 ways to divide 8 objects into 3 groups.

Example: Find the coefficients an for the xn term in the expansion of the following
formal series: [ ∞∑

k=1

xk
]m

=
∞∑

n=m

anx
n
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CPMSOCOvercounting
The Division rule helps remove over-counting from equivalent scenarios

If every outcome to an event A is counted n times, the total can be divided by n to arrive
at the correct counting.

Example: Using the division rule and the fact that there are r! ways to arrange r objects,

justify why
(
n
k

)
=

n!

k!(n− k)!
.
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CPMSOCOvercounting
Example: Using the division rule and the fact that there are r! ways to arrange r objects,
justify why (

n

k

)
=

n!

k!(n− k)!

If we were to select our k objects from our n objects, we would have:
n ways to select our first object
n− 1 ways to select our second
n− 2 ways to select our third

and so on. So, the number of ways to select our objects would be:

n× (n− 1)× · · · × (n− (k − 1)) =
n!

(n− k)!
.
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CPMSOCOvercounting
However, this counts each way to select k objects multiple times! In fact, if we were to
select the same k objects in a different order, this method would count it again.

We can see that the number of ways to order our k numbers is k!, and so we have to
divide our result by k!. This gives us:

n!

k!(n− k)!
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CPMSOCHandshaking Lemma
Here’s a famous problem: suppose you’re in a room with 20 people. Each person shakes
hands with every other person once and once only. How many handshakes were
performed?

Each person shakes hands with 19 people, so the answer is 20 · 19 = 380

This approach does not account for the fact that each handshake will be counted
twice.
We account for this error by dividing 380 by 2, so the answer is 190.

□
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CPMSOCInclusion-Exclusion
The inclusion-exclusion principle is an organized counting technique used to find the
size of the union of multiple sets by considering their intersections.
It states that the size of the union of n sets A1, A2, . . . , An can be calculated as
follows: ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩Aik |

A simple example learnt in high school is |A ∪B| = |A|+ |B| − |A ∩B|.
Inclusion-Exclusion just generalises this concept of adding/subtracting to avoid
double-counting for larger numbers of sets.

Example: Consider three sets A, B, and C. We want to find the size of their union.
Suppose |A| = 5, |B| = 4, |C| = 6, |A ∩B| = 2, |A ∩ C| = 3, |B ∩ C| = 1, and
|A ∩B ∩ C| = 2.
Applying the inclusion-exclusion principle:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
= 5 + 4 + 6− 2− 3− 1 + 2 = 11
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CPMSOCInclusion-Exclusion
Question: How many integers between 1 and 1000 are divisible by at least one of 2, 3, or
5?

Solution: Let A2, A3, and A5 denote the sets of integers between 1 and 1000 that are
divisible by 2, 3, and 5, respectively.
Using the inclusion-exclusion principle, we can calculate the total number of integers
divisible by at least one of these numbers as:

|A2 ∪A3 ∪A5| = |A2|+ |A3|+ |A5| − |A2 ∩A3| − |A2 ∩A5| − |A3 ∩A5|+ |A2 ∩A3 ∩A5|

=

⌊
1000

2

⌋
+

⌊
1000

3

⌋
+

⌊
1000

5

⌋
−
⌊
1000

2× 3

⌋
−
⌊
1000

2× 5

⌋
−
⌊
1000

3× 5

⌋
+

⌊
1000

2× 3× 5

⌋
= 500 + 333 + 200− 166− 100− 66 + 33 = 834

Therefore, there are 834 integers between 1 and 1000 that are divisible by at least one of
2, 3, or 5.
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CPMSOCPigeonhole Principle
The "classic" Pigeonhole Principle (PHP) states that if we have n+ 1 pigeons and n
holes for n ∈ N such that every pigeon goes into a hole, a hole must have at least 2
pigeons.
A generalization (which may also be referred to as pigeonhole principle), is that if we
have km+ 1 pigeons and m holes for k,m ∈ N, then at least one hole must have at
least k + 1 pigeons.
Infinite Pigeonhole Principle states that if there are infinitely many pigeons and
finitely many holes, then at least one hole will have infinitely many pigeons.

Example: Show that if one selects n+ 1 numbers from the set

{1, 2, . . . 2n},

then there will be some two of them that sum to 2n+ 1.
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CPMSOCPigeonhole Principle
Consider splitting our original set into n subsets which we treat as the "holes":

{1, 2n}, {2, 2n− 1}, . . . , {n, n+ 1}

Note that the sum of the elements of each is 2n+ 1. By pigeonhole principle, as we select
n+ 1 numbers (which act as our pigeons), we will select at least two elements of one of
the subsets. This means that we will select some 2 elements in our original set that sum
to 2n+ 1, as desired.

It’s crucial to consider what elements will be our "holes", they will be more obscure in
harder questions.
Ensure that each pigeon is assigned to a pigeonhole when selecting your "holes".
When writing up, there is more leniency as long as you state PHP and clearly define
what pigeon/holes are (at least with competitions).
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CPMSOCBijections
A bijection is a mapping f : A −→ B of elements of A to elements of B which is both
injective and surjective.
If a bijection exists between some finite sets A and B, then |A| = |B|.
Finding bijections is useful for showing two sets have the same size.

Example: Show that (
n

k

)
=

(
n

n− k

)
for all non-negative integers n ≥ k ≥ 0.
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CPMSOCBijections
Below is an example of when n = 10, k = 4 (blue objects are the objects selected).

Every way for us to choose 4 blue squares has a corresponding way for us to choose
the 6 red squares and removing it instead.
There is a bijection between choosing 4 out of 10 blue squares, and 6 out of 10 red
squares.
Thus, the number of ways to choose 4 objects from 10 is the same as choosing 6
objects from 10; i.e,

(
10
6

)
=

(
10
4

)
.

This argument may be generalized for arbitrary non-negative integers n ≥ k ≥ 0.
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CPMSOCBijections
Example:
In Numberland, car plates have six-digit all-number (0-9) plates. If A is the number of cars
where the sum of the first three digits is the same as the sum of the last three, and B is
the number of cars where all the digits sum to 27, prove that A = B.
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CPMSOCBijections
Example:
In Numberland, car plates have six-digit all-number (0-9) plates. If A is the number of cars
where the sum of the first three digits is the same as the sum of the last three, and B is
the number of cars where all the digits sum to 27, prove that A = B.

We can denote each 6 digit number as a1a2a3a4a5a6 where a1, a2, . . . , a6 are its digits. We
then consider the bijection which maps:

a1a2a3a4a5a6 7→ a1a2a3b4b5b6

where bi = 9− ai.
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CPMSOCBijections
We can denote each 6 digit number as a1a2a3a4a5a6 where a1, a2, . . . , a6 are its digits. We
then consider the bijection which maps:

a1a2a3a4a5a6 7→ a1a2a3b4b5b6

where bi = 9− ai.

Then, we see that if a1 + a2 + a3 = a4 + a5 + a6, we get that:

a1 + a2 + a3 + b4 + b5 + b6 = a4 + a5 + a6 + b4 + b5 + b6

= (a4 + b4) + (a5 + b5) + (a6 + b6)

= 27

and thus if a 6 digit number has the sum of the first three digits is the same as the sum of
the last three, we can biject it to a 6 digit number whose digit sum is 27.
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CPMSOCDouble Counting
Sometimes to prove an equality, we want to count a quantity in two different ways.

Example:
Prove that for all positive integers n and r,(

n

r

)
+

(
n

r − 1

)
=

(
n+ 1

r

)
.

We consider the number of ways to pick r people to form a soccer team from n+ 1, and
will count this in two ways.

We can just consider the number of ways to pick r people from n+ 1 people to get
(
n+1
r

)
options.
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CPMSOCDouble Counting
Alternatively, we can pick a particular person from the n+ 1 people (let’s say they’re the
best player). Then:

If they aren’t chosen to be in the team, there are
(
n
r

)
ways to pick the r people who

are.
If they are chosen to be in the team, there are

(
n

r−1

)
ways to pick the other people

r − 1 players to join the team.
This yields a total of

(
n
r

)
+
(

n
r−1

)
ways to select the soccer team.

Thus we find that (
n

r

)
+

(
n

r − 1

)
=

(
n+ 1

r

)
as they are both the number of ways to select our soccer team.
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CPMSOCDouble Counting
Example:
Show that (

2n

n

)
=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

for all positive integers n.

We consider counting the number of ways to select a team of n people from 2n people.
By definition, this value will be

(
2n
n

)
, which will be our first way of counting it.
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CPMSOCDouble Counting
Now, consider splitting our 2n people into two groups of n people. For each integer
0 ≤ k ≤ n, if we select k people for our team from the first group, we must select n− k
people from the other group if we want our team to have n people. Alternatively, we can
see this as choosing k people in the other group to not be in our team.

Thus, we find that the number of ways to select our team is

n∑
k=0

(
n

k

)
×
(
n

k

)
=

n∑
k=0

(
n

k

)2

and thus the number of ways to choose n objects from 2n is also
(
n
0

)2
+
(
n
1

)2
+ · · ·+

(
n
n

)2,
as desired.
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CPMSOCAttendance form :D
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