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CPMSOCWelcome
Next mathematics workshops in week 5.
Slides will be uploaded on website (unswcpmsoc.com)
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CPMSOCAttendance form
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CPMSOCCounting
Counting is when you have some things and you want to know how many things you
have.
The naive method is to literally just count them one-by-one, but for large numbers of
things this is tedious, so combinatorics can help us count faster.
A very common application of combinatorics is in probability, where we have mutually
exclusive events of equal probability, so that counting the events we care about let us
describe the probability of any one of these events occuring as
P (any one of several events occurs) = number of events we care about

total number of events .
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CPMSOCCounting Example
In a certain committee, each member belongs to exactly three subcommittees, and
each subcommittee has exactly three members. Prove that the number of members
equals to the number of subcommittees.
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CPMSOCCounting Example - Solution
In a certain committee, each member belongs to exactly three subcommittees, and
each subcommittee has exactly three members. Prove that the number of members
equals to the number of subcommittees.
Solution. For each of m members, there are 3 member-subcommittee relationships.
For each of n subcommittees there are 3 member-subcommittee relationships. So
we have 3m = 3n, and dividing by 3 we are done.
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CPMSOCFactorials
We often want to count how many ways some objects can be arranged.
If we want to arrange n objects into n places, we can place them in one by one.
The first object can go in n spots. Then there are n− 1 spots left.
The second can now go in n− 1 spots. Then there are n− 2 spots left.
If there are k ways of doing one thing, and q ways of doing another independent
thing, there are kq ways of doing both,
Applying this principle in this case, we see there are n(n− 1)(n− 2)...3 · 2 · 1 ways of
arranging these n objects. We call this product n factorial, denoted n!.

David and Zac Mathematics Workshop 3/4/23 7 / 31



CPMSOCFactorials - Example
A deck of cards is randomly shuffled. What is the chance that after shuffling, the
cards are back in the order they started?
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CPMSOCFactorials - Example
A deck of cards is randomly shuffled. What is the chance that after shuffling, the
cards are back in the order they started?
Answer: They started in one order, but there are 52! arrangements they can be
shuffled into. Thus, the probability we shuffle them back to the starting order is 1

52! ,
which is roughly 1.24 · 10−68.
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CPMSOCGeneral Rearrangement
When using factorials, we assumed there were n items in n places and all items were
unique. What about when we don’t have these assumptions?
When some k of the items are considered the same, our factorial arrangements
consider k! as many cases as they should, because we rearranged these items as if
they were different. To counteract this, we can divide out by k! to reverse this extra
counting.
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CPMSOCGeneral Rearrangement - Division Example
How many strings can be made of the letters "abracadabra"?
Note that there are 11 total letters, 5 a’s, 2 b’s, 2 r’s, 1 c, and 1 d.
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CPMSOCGeneral Rearrangement - Division Example
How many strings can be made of the letters "abracadabra"?
Note that there are 11 total letters, 5 a’s, 2 b’s, 2 r’s, 1 c, and 1 d.
Answer: we rearrange the 11 letters, but have to divide out our arrangements of the
a’s, b’s, and r’s. We get a total of 11!

5!·2!·2!
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CPMSOCPermutation
What if we have n items, but k < n places? We need to choose which items get to be
placed, as some will miss out. Then for the first place, there are n objects to choose
from, n− 1 for the second place, and so on until we have n− k+ 1 objects for the last
spot. Multiplying these we get n(n− 1)...(n− k + 1). This is often denoted
P (n, k) = nPk, where P stands for "permutation". Notice this is close to the
expression for n!, but we have divided out the terms n− k, n− k − 1, and so on. This
means we can write nPk = n!

(n−k)!
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CPMSOCChoice
Notice that when we placed n items in k < n places, we not only chose which items
were placed, but we accounted for how they could be arranged in k! ways in these
places. If we don’t want to count arrangements, and just the number of ways to
choose k elements of a set of n objects, we divide nPk by k! to get the choose
function, nCk =

(
n
k

)
= n!

k!(n−k)! .
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CPMSOCChoice - Example
Prove that for n ∈ N, (a+ b)n =

∑n
k=0

(
n
k

)
akbn−k. This is called the binomial theorem.
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CPMSOCChoice - Example
Prove that for n ∈ N, (a+ b)n =

∑n
k=0

(
n
k

)
akbn−k.

Answer: (a+ b)n = (a+ b)(a+ b)...(a+ b). When multiplied out, we take from each
set of parentheses either an a term or a b term. We do this for n terms, so there are a
total of n selections made. If k a’s are selected, the other n− k b’s are selected. The
number of ways of selecting k a’s is

(
n
k

)
, so this gives the number of akbn−k terms.

Thinking about this example, can we justify why
(
n
k

)
=

(
n

n−k

)

David and Zac Mathematics Workshop 3/4/23 16 / 31



CPMSOCInclusion-Exclusion Principle - The Why
One fundamental strategy in counting is known as "case bashing". When you are
presented with a question which can be broken down into mutually exclusive cases,
then you’re all good! You only need to add up the individual cases.
Unfortunately, this is usually not the case. If you are presented with a question with
intersecting cases, you must take them into account.
For example, how many 3-digit numbers exist such that at least one digit is equal to
its position in the number (i.e. the first digit is 1, the second digit is 2 and the third
digit is 3)?
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CPMSOCInclusion-Exclusion Principle - The What
Let’s consider the question posed last slide. There are 100 numbers with 1 as its first
digit, 90 numbers with 2 as its second digit and 90 numbers with 3 as its third digit.
However, we know that the answer is not 100 + 90 + 90 = 280.
We have double counted the numbers 12?, 1?3 and ?23. To fix this, we subtract 280 by
how many numbers are in the form 12?, 1?3 and ?23. There are 10 numbers in the
form 12?, 10 numbers in the form 1?3 and 9 numbers in the form ?23. Subtracting
them from 280 gives us 280− 10− 10− 9 = 251.
However, we still need to consider 123. We know we have triple counted it in the first
step, and we triple removed it in the second step. Overall, we did not count 123 in our
calculation. Thus, we have to add it back in, hence giving us a total of 251 + 1 = 252
numbers.
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CPMSOCInclusion-Exclusion Principle - The How
We first define n intersecting sets A1, A2, ...An. Let us denote f(x) as the size of the
intersection of n sets.
For example, f(2) = |A1 ∩A2|+ |A1 ∩A3|+ ...+ |An−1 ∩An|.
Prove that |A1 ∪A2 ∪ ... ∪An| =

∑n
k=1(−1)k+1f(k).
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CPMSOCInclusion-Exclusion Principle - Recipe
Prove that |A1 ∪A2 ∪ ... ∪An| =

∑n
k=1(−1)k+1f(k).

You can imagine that this formula is a recipe, with the number of steps being equal to
the number of sets. The first step is to add in the sizes of the sets, the second step is
to subtract by the sizes of the intersections of two sets, and so on.
We shall prove that for an element E present in exactly k sets, say
E ∈ A1 ∩A2 ∩ ... ∩Ak, that E has been 0-counted if k is odd and double counted if k
is even.
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CPMSOCInclusion-Exclusion Principle - Proof
In the first step, E is counted

(
k
1

)
times. In the second step, E is taken away

(
k
2

)
times.

Repeating this for the first k steps, we see that E is counted(
k
1

)
−

(
k
2

)
+ ...+ (−1)k+1

(
k
k

)
times.

For any integer i ≥ 1, we can replace any term
(
k
i

)
with

(
k−1
i−1

)
+
(
k−1
i

)
by virtue of

Pascal’s triangle.
Doing so turns our expression into

(
k−1
0

)
+
(
k−1
1

)
−
(
k−1
1

)
−
(
k−1
2

)
+
(
k−1
2

)
+ ... and we

can see that each term will cancel off. All that matters is finding what the first and last
terms are equal to. This technique is known as telescoping.

David and Zac Mathematics Workshop 3/4/23 21 / 31



CPMSOCInclusion-Exclusion Principle - Proof
We can calculate that the first term is 1 and the last term is (−1)k

(
k
k

)
= (−1)k.

Therefore, it all depends on if k is even or odd.
If k is odd, it means we have counted E a net total of 1 + (−1)k = 0 times and so we
adjust this by adding the term f(k) = (−1)k+1f(k).
If k is even, it means we have counted E a net total of 1 + (−1)k = 2 times and so we
adjust this by adding the term −f(k) = (−1)k+1f(k).
In both cases, we have added in the term (−1)k+1f(k). Hence, our final expression
will become

∑n
k=1(−1)k+1f(k).
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CPMSOCDerangement - Definition
A derangement (not to be confused with insanity) is a permutation which leaves no
elements in its original place.
For example, DCBA is a derangement of the set ABCD since A is not in the first
position, B is not in the second position and so on.
The notation for the number of derangements of a set of size n is !n. Real life uses of
derangements include the number of ways to organise a Secret Santa.
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CPMSOCDerangement - Question
There are many formulae for !n, but for the sake of understanding we shall use the
formula shown below.
Prove that for n ∈ N and n > 1, !n = n!

∑n−2
k=0

(−1)n−k

(n−k)! .

Note that derangements of size 1 are trivial.
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CPMSOCDerangement - Proof
Prove that for n ∈ N and n > 1, !n = n!

∑n−2
k=0

(−1)n−k

(n−k)! .

This result comes from the inclusion-exclusion principle. Firstly, we define the
ordered set a1, a2, ..., an where n ∈ N and n > 1.
Instead of counting the ways where all the elements are in different positions, we
count the number of ways where at least one element is fixed.
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CPMSOCDerangement - Proof
When a1 is fixed, there are (n− 1)! ways to arrange the other elements. This similarly
applies for a2, ..., an and therefore we get the answer n× (n− 1)! = n!.
However, we double count the cases where we fix two elements a1a2, a1a3, ..., an−1an
and so we subtract them. When we fix a1a2, there will be (n− 2)! ways to arrange the
other elements. Repeating this for all other fixing of two elements, we arrive at an
answer of

(
n

n−2

)
× (n− 2)!.

Repeating the inclusion-exclusion principle until all elements are fixed will give us the
number of ways such that at least one element is fixed, that being
n!−

(
n

n−2

)
× (n−2)!+

(
n

n−3

)
× (n−3)!− ...− (−1)n×

(
n
0

)
×0! = n!−

∑n−2
k=0 (−1)n−k

(
n
k

)
k!.

Subtracting this result from the total number of ways to arrange n elements (n!), we
get !n =

∑n−2
k=0 (−1)n−k

(
n
k

)
k! = n!

∑n−2
k=0

(−1)n−k

(n−k)! .
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CPMSOCPigeonhole Principle
If I have more pigeons than holes, I can’t fit all pigeons in with just one in each hole!
More generally, with p pigeons and h holes, if p = qh+ r for r > 0, there must be at
least one hole containing q + 1 pigeons.
The main problem solving issue here is identifying what to call a pigeon, and what to
call a hole.
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CPMSOCPigeonhole Principle Example
Prove that having 100 whole numbers, one can choose 15 of them so that the
difference of any two is divisible by 7.
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CPMSOCPigeonhole Principle Example
Prove that having 100 whole numbers, one can choose 15 of them so that the
difference of any two is divisible by 7.
Solution: Take the numbers modulo 7 (remainders after division by 7). Then, calling
their residues holes and the numbers pigeons, we have 100 = 7 ∗ 14 + 2, so that
some residue must contain 15 members. The difference of any of these 15 equal
residues is 0 mod 7, so the difference of the original numbers is divisible by 7.
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CPMSOCAttendance form :D
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CPMSOCFurther events
Please join us for:

Maths workshop in two weeks
Social session on Friday
Programming workshop next week
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