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Pizza time! Later
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Queue Are Code
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CPMSOCExponentials in modular arithmetic
Let p be a prime.

Since multiplication under mod p is invertible, and we have a finite space, there must exist
a positive k where ak ≡ 1 (mod p). Why?

By the pigeonhole principle, there must be two am and an which are equal for m ̸= n, and
since a−1 exists, am−n ≡ 1 (mod p).

ap−1 ≡ 1 (mod p)

Closed form for smallest length positive integer k? Not trivial! But what can we say about
k? p− 1 is divisible by k.
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CPMSOCQuadratic Residues
We call a remainder x a "quadratic residue" mod m if there exists a y such that y2 ≡ x
(mod m).

This is useful as under the modulus of certain numbers, only very few remainders are
quadratic residues. For any prime p, there are exactly p+1

2 quadratic residues mod p.

Good numbers to use for equations dealing with squares:
Mod 3: Quadratic residues are 0, 1
Mod 4: 0, 1
Mod 5: 0, 1, 4
Mod 8: 0, 1, 4
Mod 16: 0, 1, 4, 9
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CPMSOCExample Problems
Show that 60 divides any product of Pythagorean triples.

Consider mod 3, 5 and 8. Let our Pythagorean triple be a, b, c, and a2 + b2 = c2. Squares
exist only as 0, 1 for 3, and 0, 1, 4 in 5 and 8.

For 3, at least one of a, b must 0 (mod 3) so that c2 is 0 or 1
For 5, 4 cannot be constructed as the sum of two of 0, 1, 4 under (mod 5), so an
argument similar to before is applicable
For 8, for a2 + b2 to be a quadratic residue either both are 4 (mod 8) (so both are even,
thus abc is a multiple of 4), or one of a2, b2 is divisible by 8 (similar argument to before),
thus a is divisible by 4 (this idea does not work under (mod 4)).
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CPMSOCCubic Residues
Similarly, we call a remainder x a "cubic residue" mod m if there exists a y such that
y3 ≡ x (mod m). For primes p ≡ 1 (mod 3) there are exactly p+2

3 residues, but p for p ≡ 2
(mod 3).

Good numbers to use for equations dealing with cubes:
Mod 7: 0, 1, 6
Mod 9: 0, 1, 8
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CPMSOCDiophantine equations
Definition

A diophantine equation is one with integer coefficients and only integer solutions of in-
terest.

Example: Find the smallest positive integers a, b, c such that a
b+c +

b
a+c +

c
a+b = 4.

Play around with the equation
Abuse integer-ness by factoring terms and partioning factors
Substitute expressions to create simpler equations
Test cases/find minimum solutions to build from
Utilise known residues

Another cool technique will be discussed!
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CPMSOCExample Questions
Find all integer solutions to a3 + b3 + c3 = 2001

Consider mod 9. 2001 ≡ 3 (mod 9), x3 ∈ (−1, 0, 1). So, a3 ≡ b3 ≡ c3 ≡ 1. It can be easily
seen from here that the only solutions are such that {a, b, c} = {10, 10, 1}
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CPMSOCExample Questions
Prove that for any prime p, there exists a pair of integers a, b such that a2 + b2 + 1 divisible
by p.

Rewrite the equation as a2 ≡ 1− b2 (mod p). How many values can each side take?

There are p+1
2 quadratic residues, so the LHS and RHS can take on p+ 1 values in total.

By PHP, at least one value occurs in both sides as there are only p remainders.
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CPMSOCInfinite Descent
Assume there exists a smallest solution, and prove the existence of a smaller one.

Famous example is the proof of the irrationality of
√
2.
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CPMSOCInfinite Descent - question
Find all integer solutions to a3 + 3b3 = 9c3.

Assume there exists non-zero, positive a, b, c
satisfying this.

a is divisible by 3.
So, b is divisible by 3.
So, c is divisible by 3.

By infinite descent, we see a contradiction has been reached, so a = b = c = 0 is the only
solution.
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CPMSOCA harder counting question
Show there is a positive Fibonacci number divisible by 2023.

Hint 1: Divisibility → Modular arithmetic
Hint 2: Pigeonhole principle, and calculating (Fn, Fn+1) is "deterministic" to calculate
(forwards and backwards).
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CPMSOCAn alternate proof of infinite primes
The Fermat numbers are numbers of the form 22

n
+ 1. The first 5 are

F0 = 22
0
+ 1 = 3 (1)

F1 = 22
1
+ 1 = 5 (2)

F2 = 22
2
+ 1 = 17 (3)

F3 = 22
3
+ 1 = 257 (4)

F4 = 22
4
+ 1 = 65537 (5)

Fermat thought all such numbers were prime. Unfortunately, F5 is divisible by 641, so this
isn’t quite true. However, these numbers do give us another way to show there are
infinitely many primes.

Claim: All Fermat numbers are relatively coprime.
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CPMSOCA surprise!
4 problems = 1 chocolate
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CPMSOCFurther events
Please join us for:

Social session tomorrow!
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