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CPMSOCWelcome
We will announce the winner to the Welcome Week Competition!
All workshops shall be 2 hours long.
The notes of the contents in the workshops shall be provided on the CPMSoc
website.
Each workshop will have an accompanying problem set, which can be found in the
notes.
There will be workshops on odd numbered weeks from week 5 on wards (That’s this
week).
Hope you enjoy yourselves and feel free to ask questions during the workshops ,.
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CPMSOCWinners

1 Cyril Subramanian (Congratulations , )
2 Ryno
3 ChestaWu
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CPMSOCRandom Draws
The recipients of the 2 Random Prizes will be selected after the other prizes are awarded,
and are to be determined by performing the following procedure 2 times:

Define a "selectable" participant as one who is eligible and who has not already been
awarded a prize. Let the total number of selectable participants be T . If T = 0, no prize is
awarded. Otherwise, one selectable participant is randomly selected to win a Merit Prize,
such that for each selectable participant, they have a 1

T chance of being selected.

Note: All prize recipients will be contacted via their preferred email very soon with details
of how to claim their prizes.
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CPMSOCDebrief
Example (Question 20)

Let f ∶ R→ R be such that

f (2x − f(x)
α
) = αx,∀ x ∈ R.

Prove that f(x) = α(x − c), for all x ∈ R.
Note: α ≠ 0.
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CPMSOCNotation
1 N = {1,2,3⋯}
2 Pn = {p ∈ P ∶ p∣n, n ∈ N}
3 Any problem in the problem section that is starred (*) is a standard theorem as well

and therefore is highly recommended to be learnt.
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CPMSOCAlgebraic Identities
Familiarity with Algebraic Identities is one of the basic skills that is required when one
indulges in Mathematics nevertheless Competitive Mathematics. In this section we
present a treatment of some of the most important algebraic identities that one must
know.

Lemma (Sophie Germain)

Let a, b ∈ R then
a4 + 4b4 = (a2 − 2ab + 2b2)(a2 + 2ab + 2b2).

Proof.

a4 + 4b4 + 4a2b2 − 4a2b2 = (a2 + 2b2)2 − 4a2b2 = (a2 − 2ab + 2b2)(a2 + 2ab + 2b2).

∎
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CPMSOCApplication
Example

Given two line segments of lengths a and b, construct with a straightedge and compass
a segment of length 4

√
a4 + b4.

Proof.

Given two line segments of length a and b, we have

a4 + b4 = (a2 −
√
2ab + b2)(a2 +

√
2ab + 2b2),

hence
4
√
a4 + b4 = 4

√
(a2 −

√
2ab + b2)(a2 +

√
2ab + 2b2).

∎
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CPMSOCApplication
Proof.

Given two line segments of length a and b, we have

a4 + b4 = (a2 −
√
2ab + b2)(a2 +

√
2ab + 2b2),

hence
4
√
a4 + b4 = 4

√
(a2 −

√
2ab + b2)(a2 +

√
2ab + 2b2).

Through the law of cosines, we can construct segments of length
√
a2 ±
√
2ab + b2 using

triangles of side a and b with the angle between them being 135 and 45 respectively.
Subsequently we can also construct

√
xy for "constructible" x and y as this is nothing

but the geometric mean given by AD in a right angled triangle ABC (angle(A)=90) with
BD = x and CD = y. ∎
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CPMSOCAlgebraic Identities
Another important Identity that one might be familiar with is

Lemma

Let a, b, c ∈ R, then a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

Proof.

Consider the following

D =
RRRRRRRRRRRRRR

a b c
c a b
b c a

RRRRRRRRRRRRRR
,

which is to evaluate in two ways first we take the determinant the usual way using Sarrus’
rule, and then by adding all the rows and factoring (a + b + c). ∎
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CPMSOCApplication
Example

Prove that a3 + b3 + c3 − 3abc ≥ 0, ∀a, b, c ≥ 0.

Proof.

Consider a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca). We take note that a+b+c ≥ 0
for all a, b, c ≥ 0. Hence all that remains to be proven is that (a2 + b2 + c2 − ab− bc− ca) ≥ 0.

Consider through AM-GM,

a2 + b2 ≥ 2ab,
b2 + c2 ≥ 2bc,
c2 + a2 ≥ 2ca.

∎
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CPMSOCApplication
Proof.

Consider a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca). We take note that a+b+c ≥ 0
for all a, b, c ≥ 0. Hence all that remains to be proven is that (a2 + b2 + c2 − ab − bc − ca) ≥ 0.

Consider through AM-GM,

a2 + b2 ≥ 2ab,
b2 + c2 ≥ 2bc,
c2 + a2 ≥ 2ca.

Adding all of the above proves the point. A more direct way is to notice that (a2 + b2 + c2 −
ab − bc − ca) = 1

2[(a − b)
2 + (b − c)2 + (c − a)2] which is manifestly non-negative. ∎
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CPMSOCFundamental Theorem of Algebra
The fundamental theorem of algebra is a remarkable result about polynomials that was
first proven by Carl Gauss in 1799.

Lemma

Every polynomial equation of degree n with complex coefficients has at least one com-
plex root.

A corollary of this theorem is that every polynomial with complex coefficients can be
written as the product of linear factors with complex in the form
P (z) = A(x − z1)(x − z2) . . . (x − zn) where z1, z2, . . . , zn are the complex roots (there can
be repeated roots, this is referred to as the multiplicity of the roots).
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CPMSOCPolynomial Division
Lemma (Remainder Theorem)

If A(x) and B(x) are polynomials with real coefficients then there exist polynomials Q(x)
and R(x) such that

A(x) = B(x)Q(x) +R(x)

where deg(R) < deg(B).

Note: Q and R are respectively called (quotient) and (remainder).

The above lemma about polynomial division is analogous to the ideas of quotient and
remainders we are familiar with when we divide two integers.
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CPMSOCFactor Theorem
Now we move onto the factor theorem, which is a simple way of searching for linear
factors of polynomials.

Lemma

If p ∈ R[x] then p(a) = 0 for some a ∈ R if and only if x − a is a factor of p(x).

Proof.

If we divide the polynomial p(x) by x − a then we can write p(x) in the form p(x) =
(x − a)q(x) + c where q(x) is a polynomial and c is a constant. Note that p(a) = c and we
see that c = 0 is equivalent to both p(a) = 0 and x − a being a factor of p(x). ∎
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CPMSOCApplications
Example

Let A,B,C,D ∈ R[x] such that

A(x5) + xB(x5) + x2C(x5) = (1 + x + x2 + x3 + x4)D(x),∀x ∈ R.

Prove that (x − 1) is a factor of A.
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CPMSOCApplication
Proof.

Consider x = ω,ω2, ω3, where ω is the fifth root of unity we get

A(1) + ωB(1) + ω2C(1) = 0
A(1) + ω2B(1) + ω4C(1) = 0
A(1) + ω3B(1) + ω6C(1) = 0

therefore we have that A(1) = B(1) = C(1) = 0 by solving the simultaneous equations
and therefore using the factor theorem we have that x − 1 is a factor of A(x). ∎
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CPMSOCTriangle Inequality
The triangle inequality is a simple but very useful inequality involving absolute values.

Lemma (Triangle Inequality)

Let x, y ∈ R. Then
∣x + y∣ ≤ ∣x∣ + ∣y∣, ∀x, y ∈ R.

Proof.

Squaring both sides means that the inequality is equivalent to

x2 + y2 + 2xy ≤ x2 + y2 + 2∣xy∣,

which is true because ∣xy∣ ≥ xy. ∎
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CPMSOCCorollaries
Corollary

We can prove a generalization too using induction, that

∣x1 + x2 +⋯ + xn∣ ≤ ∣x1∣ + ∣x2∣ +⋯ + ∣xn∣, ∀xi ∈ R.

Corollary (Complete Triangle Inequality)

Let x, y ∈ R. Then

∣∣x∣ − ∣y∣∣ ≤ ∣x + y∣ ≤ ∣x∣ + ∣y∣, ∀x, y ∈ R.
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CPMSOCAM-GM Inequalities
One of the other inequalities that is quite often usefull in mathematics is the
Arithmetic-Geometric Inequality or commonly known as AM-GM.

Lemma (AM-GM Inequality)

Let x1,⋯, xn be positive reals. Then

x1 +⋯ + xn
n

≥ n
√
x1⋯xn.
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Proof.

We begin by using the fact that

log(x) ≤ x − 1,∀x > 0.

Which follows due to the MVT (Try this). Let a1,⋯, an be positive reals and define A to be
the arithematic mean i.e.

A = a1 +⋯ + an
n

.

Consider x = ai
A , therefore

log (ai
A
) ≤ ai

A
− 1 Ô⇒ log(a1a2 . . . an

An
) ≤ 0.

∎
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CPMSOCWeighted AM-GM
There are more general versions of many classical inequalities that involves weights.

Lemma (Weighted AM-GM Inequality)

For positive real numbers
a1, a2, . . . , an and positive real numbers w1,w2, . . . ,wn (called weights), we have the in-
equality

w1a1 +w2a2 + . . . +wnan
w1 +w2 + . . . +wn

≥ w1+w2+...+wn

√
aw1
1 aw2

2 . . . awn
n

with equality if and only if a1 = a2 = . . . = an.
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CPMSOCRearrangement Inequality
A useful inequality that involves sequences of numbers is the rearrangement inequality,
which aims to maximise or minimise the sum of products of corresponding terms in two
sequences.

Lemma (Rearrangement inequality)

Let (a1, a2,⋯, an) and (x1, x2,⋯, xn) be two sequences of real numbers. Then the per-
mutation (b1, b2,⋯, bn) of (x1, x2,⋯, xn) which maximises the expression

E = a1b1 + a2b2 + . . . + anbn
is the permutation where the sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn) are sorted the
same way. The permutation that minimises the expressions is where the sequences are
sorted the opposite way.
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CPMSOCCauchy-Schwarz Inequality
The Cauchy-Schwarz inequality is another powerful inequality that involves two
sequences of real numbers and has many generalisations.

Lemma (Cauchy-Schwarz inequality)

If (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) are two sequences of real numbers, then

(x21 + x22 + . . . + x2n)(y21 + y22 + . . . + y2n) ≥ (x1y1 + x2y2 + . . . + xnyn)2

Equality holds if and only if we have the equal ratios

x1
y1
= x2
y2
= ⋯ = xn

yn
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CPMSOCExample Problems
1 (2004 Russian Mathematics Olympiad) (Beginner) Let a, b, c be positive numbers,

satisfying a + b + c = π
2 , prove that

cos(a) + cos(b) + cos(c) ≥ sin(a) + sin(b) + sin(c).

2 If real numbers x and y satisfy the condition x2 + xy + y2 = 1, find the minimum and
maximum value of x3y + xy3.

3 Let a, b, c, d be real numbers such that b − d ≥ 5 and all zeros x1, x2, x3, and x4 of the
polynomial P (x) = x4 + ax3 + bx2 + cx + d are real. Then find the minimum of

(x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1).

4 Let a1, a2, . . . , an (n > 3) be real numbers such that

a1 + a2 +⋯ + an ≥ n and a21 + a22 +⋯ + a2n ≥ n2.

Prove that max(a1, a2, . . . , an) ≥ 2.
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