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“Algebra is generous; she often
gives more than is asked of her.”

— D’Alembert

1 Preliminaries

1.1 Pre-Requisites

1. None

1.2 Notation

1. N =
{
1, 2, 3 · · ·

}
2. Pn =

{
p ∈ P : p|n, n ∈ N

}
3. Any problem in the problem section that is starred (*) is a standard

theorem as well and therefore is highly recommended to be learnt.

4. iff:= if and only if.

2 Algebraic Identities

Familiarity with Algebraic Identities is one of the basic skills that is required
when one indulges in Mathematics nevertheless Competitive Mathematics. In
this section we present a treatment of some of the most important algebraic
identities that one must now.

Lemma 2.1 (Sophie Germain) Let a, b ∈ R then

a4 + 4b4 = (a2 − 2ab+ 2b2)(a2 + 2ab+ 2b2).
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Proof.

a4+4b4+4a2b2−4a2b2 = (a2+2b2)2−4a2b2 = (a2−2ab+2b2)(a2+2ab+2b2).

Example: Given two line segments of lengths a and b, construct with a straight-
edge and compass a segment of length 4

√
a4 + b4.

Proof. Given two line segments of length a and b, we have

a4 + b4 = (a2 −
√
2ab+ b2)(a2 +

√
2ab+ 2b2),

hence
4
√
a4 + b4 =

√
(a2 −

√
2ab+ b2)(a2 +

√
2ab+ 2b2).

Through the law of cosines, we can construct segments of length
√
a2 ±

√
2ab+ b2

using triangles of side a and b with the angle between them being 135 and 45
respectively.
Subsequently we can also construct

√
xy for ”constructible” x and y as this is

nothing but the geometric mean given by AD in a right angled triangle ABC
(angle(A)=90) with BD = x and CD = y.

Another important Identity that one might be familiar with is

Lemma 2.2 Let a, b, c ∈ R then

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).

Proof. Consider the following

D =

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ ,
which is to evaluate in two ways first we take the determinant the usual way
using Sarrus’ rule, and then by adding all the rows and factoring (a + b +
c).

Example: Prove that

a3 + b3 + c3 − 3abc ≥ 0, ∀a, b, c ≥ 0.
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Proof. Consider a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).
We take note that a+ b+ c ≥ 0 for all a, b, c ≥ 0. Hence all that remains to be
proven is that (a2 + b2 + c2 − ab− bc− ca) ≥ 0.

Consider through AM-GM,

a2 + b2 ≥ 2ab,

b2 + c2 ≥ 2bc,

c2 + a2 ≥ 2ca.

Adding all of the above proves the point. A more direct way is to notice that
(a2+ b2+ c2−ab− bc− ca) = 1

2 [(a− b)2+(b− c)2+(c−a)2]which is manifestly
non-negative.

3 Polynomials

The fundamental theorem of algebra is a remarkable result about polyno-
mials that was first proven by Carl Gauss in 1799.

Lemma 3.1 [Fundamental Theorem of Algebra] Every polynomial equa-

tion of degree n with complex coefficients as at least one complex root.

A corollary of this theorem is that every polynomial with complex coefficients
can be written as the product of linear factors with complex in the form P (z) =
A(x− z1)(x− z2) . . . (x− zn) where z1, z2, . . . , zn are the complex roots (there
can be repeated roots, this is referred to as the multiplicity of the roots).

Let’s have a look at polynomial division now. The following lemma about
polynomial division is analogous to the ideas of quotient and remainders we
are familiar with when we divide two integers.

Lemma 3.2 [Remainder Theorem] If A(x) and B(x) are polynomials with

real coefficients then there exist polynomials Q(x) and R(x) such that

A(x) = B(x)Q(x) +R(x)

where deg(R) < deg(B).

Note: Q and R are respectively called (quotient) and (remainder).
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Now we move onto the factor theorem, which is a simple way of searching for
linear factors of polynomials.

Lemma 3.3 [Factor Theorem] If p ∈ R[x] then p(a) = 0 for some a ∈ R
if and only if x− a is a factor of p(x).

Proof. If we divide the polynomial p(x) by x− a then we can write p(x) in the
form p(x) = (x − a)q(x) + c where q(x) is a polynomial and c is a constant.
Note that p(a) = c and we see that c = 0 is equivalent to both p(a) = 0 and
x− a being a factor of p(x).

Example: Let A,B,C,D ∈ R[x] such that

A(x5) + xB(x5) + x2C(x5) = (1 + x+ x2 + x3 + x4)D(x),∀x ∈ R.

Prove that (x− 1) is a factor of A.

Proof. Consider x = ω, ω2, ω3, where ω is the fifth root of unity we get

A(1) + ωB(1) + ω2C(1) = 0

A(1) + ω2B(1) + ω4C(1) = 0

A(1) + ω3B(1) + ω6C(1) = 0

therefore we have that A(1) = B(1) = C(1) = 0 by solving the simultaneous
equations and therefore using the factor theorem we have that x−1 is a factor
of A(x).

A common lemma that is quite elementary to the study of polynomials is the
Gauss’ Lemma which gives a necessary and sufficient condition for the irre-
ducibility of integer polynomials.

4 Inequalities

The triangle inequality is a simple but very useful inequality involving abso-
lute values.

Lemma 4.1 (Triangle Inequality) Let x, y ∈ R. Then

|x+ y| ≤ |x|+ |y|, ∀x, y ∈ R.
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Proof. Squaring both sides means that the inequality is equivalent to

x2 + y2 + 2xy ≤ x2 + y2 + 2|xy|,
which is true because |xy| ≥ xy.

Corollary: We can prove a generalization too using induction, that

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|, ∀xi ∈ R.

Corollary: (Triangle Inequality [Complete]) Let x, y ∈ R. Then

||x| − |y|| ≤ |x+ y| ≤ |x|+ |y|, ∀x, y ∈ R.

We also note that this is true for normed spaces and in general the p-norm,
that for all x, y ∈ Rn we have

||x+ y||p ≤ ||x||p + ||y||p,

where ||x||p = (
∑n

i=1 x
p
i )

1/p
.

Another useful inequality is the Arithmetic-Geometric mean (AM-GM) in-
equality.
One of the other inequalities that is quite often usefull in mathematics is the
Arithmetic-Geometric Inequality or commonly known as AM-GM.

Lemma 4.2 (AM-GM Inequality) Let x1, · · · , xn be positive reals. Then

x1 + · · ·+ xn

n
≥ n

√
x1 · · ·xn.

Proof. We begin by using the fact that

log(x) ≤ x− 1,∀x > 0.

Which follows due to the MVT (Try this). Let a1, · · · , an be positive reals
and define A to be the arithematic mean i.e.

A =
a1 + · · ·+ an

n
.

Consider x = ai

A , therefore

log
(ai
A

)
≤ ai

A
− 1 =⇒ log

(a1a2 . . . an
An

)
≤ 0.
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A useful inequality that involves sequences of numbers is the rearrangement
inequality, which aims to maximise or minimise the sum of products of cor-
responding terms in two sequences.

Lemma 4.3 (Rearrangement inequality) Let (a1, a2, · · · , an) and
(x1, x2, · · · , xn) be two sequences of real numbers. Then the permutation
(b1, b2, · · · , bn) of (x1, x2, · · · , xn) which maximises the expression

E = a1b1 + a2b2 + . . .+ anbn

is the permutation where the sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn)
are sorted the same way. The permutation that minimises the expressions
is where the sequences are sorted the opposite way.

The Cauchy-Schwarz inequality is another powerful inequality that involves
two sequences of real numbers and has many generalisations.

Lemma 4.4 (Cauchy-Schwarz inequality ) If (x1, x2, . . . , xn) and

(y1, y2, . . . , yn) are two sequences of real numbers, then

(x2
1 + x2

2 + . . .+ x2
n)(y

2
1 + y22 + . . .+ y2n) ≥ (x1y1 + x2y2 + . . .+ xnyn)

2

Equality holds if and only if we have the equal ratios

x1

y1
=

x2

y2
= · · · = xn

yn

5 Weighted Inequalities

There are more general versions of many classical inequalities that involves
weights.

Lemma 5.1 (Weighted AM-GM Inequality ) For positive real numbers

a1, a2, . . . , an and positive real numbers w1, w2, . . . , wn (called weights), we
have the inequality

w1a1 + w2a2 + . . .+ wnan
w1 + w2 + . . .+ wn

≥ w1+w2+...+wn

√
aw1
1 aw2

2 . . . awn
n

with equality if and only if a1 = a2 = . . . = an.
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6 Problems

6.1 Introductory Problems

1. Let a and b be coprime integers greater than 1. Prove for any n ≥ 0,
a2n+1 + b2n+1 is divisible by a+ b.

2. Find the remainder when dividing the polynomial x100 − 2x51 + 1 by
x2 − 1.

3. Let f(x) ∈ R[x], and suppose that f(x) + f ′(x) > 0 for all x. Prove that
f(x) > 0 for all x.

4. Evaluate the determinant ∣∣∣∣∣∣∣∣
1 1 1 1
w x y z
w2 x2 y2 z2

w3 x3 y3 z3

∣∣∣∣∣∣∣∣ .
6.2 Intermediate Problems

1. Prove that for all positive integers n, the polynomial 1+ x
1!+

x2

2! + . . .+ xn

n!
has no multiple roots.

2. What is the minimum possible value of x+y+z where x, y, z are positive
real numbers satisfying xy2z3 = 108?

3. Prove that for x, y ∈ Rn,

||x+ y||p ≤ ||x||p + ||y||p,

where ||x||p is the p-norm.

4. Let P (x) be a real polynomial such that P (x) ≥ 0 for all real x. Prove
that it is possible to write

P (x) = F (x)2 +G(x)2

for all real polynomials F (x) and G(x).

6.3 Advanced Problems

1. Show that the solution set of the inequality

70∑
k=1

k

x− k
≥ 5

4

is a union of disjoint intervals, the sum of whose length is 1988.
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2. Find all pairs of positive integers m,n ≥ 3 for which there exist in-
finitely many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

3. Prove that the inequality(
a2 + 2

) (
b2 + 2

) (
c2 + 2

)
≥ 9 (ab+ bc+ ca)

holds for all positive reals a, b, c.
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