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1 Notation

1. N =
{
1, 2, 3 · · ·

}
2. Pn =

{
p ∈ P : p|n, n ∈ N

}
3. iff:= if and only if

4. Any problem in the problem section that is starred (*) is a standard
theorem as well and therefore is highly recommended to be learnt.

2 Problem Solutions

Problem 2.1. Give an example of 20 consecutive numbers being composite.

Proof. The main idea for the problem is that composite numbers should be
readily factorizable to test whether they are indeed composite.
Consider

{
21! + 2, 21! + 3, · · · , 21! + 21

}
.

Problem 2.2. Determine with proof whether following is an integer or not :

N =
√
19761977 + 19781979.

Proof. Note that this should most likely not be an integer (Intuition). If N is
an integer than there exists x ∈ N such that

x2 = 19771976 + 19811979,

However x2 ≡ 0, 1 (mod 4), while 19771976 + 19821979 ≡ 2 (mod 4).

Problem 2.3. Prove that for m,n ∈ N

mφ(n) + nφ(m) ≡ 1 (mod mn),

whenever gcd(m,n) = 1.
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Proof. By Euler’s theorem,

mφ(n) + nφ(m) ≡ 1 (mod n),

mφ(n) + nφ(m) ≡ 1 (mod m).

Now either by CRT (Chinese Remainder Theorem) or by the following argu-
ment we have our proof. This implies that 1 + nα = 1 +mβ ⇐⇒ nα = mβ
for some α, β ∈ Z. Since gcd(n,m) = 1, we have that m|α, which implies that
α = md, where d is some integer. Hence mφ(n) + nφ(m) = 1 + nα = 1 + nmd.

Problem 2.4. Prove that

∑
d|n

τ3(d) =

∑
d|n

τ(d)

2

.

Proof. Note that since τ is multiplicative so are are both the summation func-
tions on the either side of the equality. Therefore all that remains is to check
that the equality holds for prime powers.

If n = pa then

∑
d|n

τ3(d) = 13 + 23 + · · ·+ (a+ 1)3 = (1 + · · ·+ a)
2
=

∑
d|n

τ(d)

2

.

Problem 2.5. (Simon Marais 2021) Define the sequence of integers a1, a2, · · ·
by a1 = 1 and

an+1 = (n+ 1− gcd(an, n))× an

for all integers ≥ 1. Prove that an+1

an
= n ⇐⇒ n ∈ P or n = 1.

Proof. One of the preliminary observation that one makes quite readily is
that aj |an,∀ 1 ≤ j < n. In fact going along these lines a power full ob-
servation/conjecture that one can actually prove is that p|an if and only if
p < n, p ∈ P . Note that this fact is enough to resolve the problem, try to see
why.

Lemma: We proceed to prove the proposition P (n) that p|an iff p ∈ P such
that p < n.

Proof. Clearly P (1) holds trivially. We assume that P (k) holds for some posi-
tive integer k.
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Note that 1 ≤ gcd(an, n) ≤ n implying that an ≤ an+1 ≤ nan and combined
with the induction hypothesis we arrive at the fact that an+1 = (n + 1 −
gcd(an, n))an is divisible by all primes less than n and is not divisible by any
prime greater than or equal to n. It follows that P (n+ 1) holds.

Note that if n is composite than gcd(an, n) = k > 1 therefore an+1 < nan
while if n is prime than an+1 = nan using the lemma.

Problem 2.6. (Wilson’s Theorem)
∗
A natural number n > 1 is prime ⇐⇒

(n− 1)! ≡ −1 (mod n).

Hint: Consider the polynomial g(x) = (x− 1)(x− 2) · · · (x− (p− 1)).

Proof. The result holds when p = 2 therefore we consider odd primes p ≥ 3.
Consider the polynomial g(x) = (x − 1)(x − 2) · · · (x − (p − 1)) where the
constant term (being (p− 1)!) is what we are interested in.

Note that h(x) = xp−1 − 1 has the same roots as g(x) modulo p. So if we
consider f(x) = (g − h)(x) then we have degf at most p − 2 having roots
1, 2, · · · , p − 1. But note that since Z/p is a field therefore a polynomial over
the field has at most as many roots as its degree therefore f has at most p− 2
roots which contradicts what we had earlier except if f ≡ 0, so its constant
term is (p− 1)! + 1 ≡ 0 (mod p).

Problem 2.7. (Putnam A3 2014) Let a0 = 5/2 and ak = a2k−1 − 2 for k ≥ 1.
Compute

∞∏
k=0

(
1− 1

ak

)
.

Proof. Since the recursion is non-linear. We try to find other ways to either
find a explicit formulation or find facts that directly relate to the question.

Note that a0 = 2 + 1
2 this effectively give us the explicit form for our recur-

rence sequence, a1 =
(
2 + 1

2

)2 − 2 = 22 + 1
22 . Implying

ak = 22
k

+
1

22k
,

which is a clearly increasing unbounded sequence, limn→∞ an → ∞.

Using ak+1 + 1 = (ak − 1)(ak + 1), we have

∞∏
k=0

(
1− 1

ak

)
=

2

7

an+1 + 1

a0a1 · · · an
,
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Using the identity

n∏
k=0

(
1 + x2k

)
=

x2n+1 − 1

x− 1
, x ∈ R,

we see that

a0a1 · · · an =
2

3

42
n+1 − 1

22n+1 .

Hence

lim
n→∞

∞∏
k=0

(
1− 1

ak

)
=

3

7

Problem 2.8. Let n be a positive integer. Prove that∑
k≥1

φ(k)
⌊n
k

⌋
=

n(n+ 1)

2
.

Proof. The key idea is to rewrite the floor as a sum involving divisors:∑
k≥1

φ(k)
⌊n
k

⌋
=

∑
k≥1

φ(k)
∑
m≤n
k|m

1 =
∑
k≥1

∑
m≤n
k|m

φ(k),

∑
k≥1

∑
k|m
m≤n

φ(k) =

n∑
m=1

∑
k|m

φ(k) =

n∑
m=1

m.
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