
CPMSoc Number Theory Workshop

March 16, 2022

”Prime numbers have always
fascinated mathematicians,
professional and amateur alike.
They appear among the integers,
seemingly at random, and yet not
quite: there seems to be some
order or pattern, just a little
below the surface, just a little out
of reach.”

— Underwood Dudley

1 Preliminaries

1.1 Pre-Requisites

1. Modular Arithmetic

2. Divisibility

3. Primality and Coprimality

4. Should have/be done/doing MATH1081 (if not that’s fine too)

Note: The above pre-requisites have been addressed in the first number theory
workshop. You can find it on the CPMSoc website :). Do go through that before
reading the following notes.

1.2 Notation

1. N =
{
1, 2, 3 · · ·

}
2. Pn =

{
p ∈ P : p|n, n ∈ N

}
3. Any problem in the problem section that is starred (*) is a standard

theorem as well and therefore is highly recommended to be learnt.
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2 Euclid’s Proof

There are infinitely many primes! A fact that seems intuitively obvious, yet
we shall present a proof (or rather we shall present Euclid’s proof). Before
proceeding to the proof we present a lemma.

Lemma (Fundamental Theorem of Arithmetic): Every positive inte-
ger n > 1 can be written as the product of primes uniquely up to ordering.

Theorem: There are infinitely many primes!

Proof. We proceed by assuming that there are finitely many primes

P =
{
p1, p2, · · · , pn

}
,

we do not bother ourselves with the ordering of the elements in the set of primes
denoted by P.

Consider the following:

n = p1 · · · pn + 1,

the above leaves a remainder of 1 when divided by each of the primes in the
set P,i.e, its not divisible by any prime in P. However by the FTA n must be
divisible by a prime pn+1 ̸∈ P, which is a contradiction since we assumed the
set of all primes is finite. Hence P must be infinite.

3 Fermat’s Little Theorem and Generalizations

3.1 Fermat’s Little Theorem

Fermat’s little theorem can be really use full in considering ak (mod n), and is
a fundamental theorem in elementary number theory.

The theorem tells us how to treat powers of an integer modulo a natural
number. And is essential for building up understanding of divisibility between
different forms of numbers.

Before proceeding to proving Fermat’s Little Theorem, we prove a little
lemma,

Lemma: If p is a prime then,

(a+ b)p ≡ ap + bp (mod p),

where a, b ∈ Z.

Proof.

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp + pM, M ∈ Z.
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Corollary: For p ∈ P (Induction), ∑
1≤i≤n

ai

p

≡
∑

1≤i≤n

api (mod p),

where ai ∈ Z,∀i.

Fermat’s Little Theorem : For a ∈ Z and p ∈ P such that gcd(a, p) = 1
we have,

ap ≡ a (mod p) ⇐⇒ ap−1 ≡ 1 (mod p).

Proof. Note that for gcd(a, p) = 1, a, p ∈ N,

ap ≡ (

a times︷ ︸︸ ︷
1 + 1 + · · ·+ 1)p ≡ (

a times︷ ︸︸ ︷
1 + 1 + · · ·+ 1) ≡ a (mod p)

3.2 Euler’s Totient Theorem

One generalization of Fermat’s Little Theorem is what’s known as Euler’s To-
tient Theorem. Euler’s Totient Theorem is naturally motivated through a spe-
cific counting problem. The Euler’s φ(n) counts the number of integers k such
that gcd(k, n) = 1, k ∈ Z/nZ.

The precise formulation is; for n ∈ N− {1}

φ(n) =
∣∣{a ∈ Zn : gcd(a, n) = 1

}∣∣ ,
we can define or check through the definition that φ(1) = 1.

Note: the elements in
{
a ∈ Zn : gcd(a, n) = 1

}
are also called units.

We present two important lemmas, that are not only important on their own
but also are precursors of a method to proving an explicit formulation of Euler’s
Totient function.

Lemma: For p ∈ P and a ∈ N,

φ(pa) = pa − pa−1.

Proof. We simply use the inclusion-exclusion principle to arrive at,

φ(pa) = pa −
∣∣{b : 1 ≤ b ≤ pa, p|b

}∣∣ = pa − pa

p

.
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Lemma: If m,n ∈ N and gcd(m,n) = 1 , then

φ(mn) = φ(m)φ(n).

This makes φ multiplicative.

Proof. Consider the following matrix:

Φ =


1 2 · · · m

m+ 1 m+ 2 · · · 2m
...

...
. . .

...
m(n− 1) + 1 m(n− 1) + 1 · · · mn

 ,

there are φ(mn) numbers in the matrix above that are relatively prime to mn.

However, note that there are also φ(m) columns containing containing those
elements in the table that are relatively prime to m. Then we take note that
there are φ(n) elements in each φ(m) columns that are relatively prime to n,
therefore there are φ(m)φ(n) elements that are co-prime to mn.

∴ φ(mn) = φ(m)φ(n).

Note: For proving that there are φ(n) elements in each φ(m) columns,
consider each element modulo n and try to map it to all integers from 0 to
n− 1.

Theorem: Let φ : N → N then,

φ(n) = n
∏
p∈Pn

(
1− 1

p

)
.

Proof. This is a corollary of the two Lemmas presented above.

Theorem (Euler’s Theorem ): If n ∈ N, and φ : N → N,

aφ(n) ≡ 1 (mod n).

Note: We see that if n = p then φ(p) = p − 1, and hence the above turns
into Fermat’s.

Proof.
Consider the set of units modulo n

R =
{
x1, x2, · · · , xφ(n)

}
,
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where 1 ≤ xi ≤ m − 1, gcd(xi, n) = 1 and all the xi are distinct. We consider
the left coset ,

aR =
{
ax1, · · · , axφ(n)

}
.

Since multiplying by a is a bijection we have that aR = R, therefore we have
that

φ(n)∏
i=1

xi ≡
φ(n)∏
i=1

(axi) (mod n), ⇐⇒ aφ(n) ≡ 1 (mod n)

4 Problems

4.1 Introductory Problems

1. Give an example of 20 consecutive numbers being composite.

2. Prove the claim : If one wishes to find prime factor of n ∈ N, then they
should check divisibility against all prime factors up to ⌊

√
n⌋.

3. Find n such that 2n|31024 − 1.

4. Let p ≥ 7 be a prime. Prove that the number

11 · · · 1︸ ︷︷ ︸
(p−1)1′s

is divisible by p.

5. Determine with proof whether following is an integer or not :√
19761977 + 19781979.

6. Prove that for m,n ∈ N

mφ(n) + nφ(m) ≡ 1 (mod mn),

whenever gcd(m,n) = 1.

4.2 Intermediate Problems

1. (IMO 2005) Consider the sequence
{
a1, a2, · · ·

}
defined by

an = 2n + 3n + 6n − 1

for all positive integers n. Determine all positive integers that are rela-
tively prime to every term of the sequence.
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2. Determine the last three digits of the number

20032002
2001

.

3. (Simon Marais 2021) Define the sequence of integers a1, a2, · · · by a1 = 1
and

an+1 = (n+ 1− gcd(an, n))× an

for all integers ≥ 1. Prove that an+1

an
= n ⇐⇒ n ∈ P or n = 1.

4. Give an example of 11 consecutive positive integers the sum of whose
squares is a perfect square.

5. (Wilson’s Theorem)
∗
A natural number n > 1 is prime ⇐⇒

(n− 1)! ≡ −1 (mod n).

Hint: Consider the polynomial g(x) = (x− 1)(x− 2) · · · (x− (p− 1)).
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