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”Prime numbers have always
fascinated mathematicians,
professional and amateur alike.
They appear among the integers,
seemingly at random, and yet not
quite: there seems to be some
order or pattern, just a little
below the surface, just a little out
of reach.”

— Underwood Dudley

1 Preliminaries

1.1 Pre-Requisites
1. Modular Arithmetic
2. Divisibility
3. Primality and Coprimality
4. Should have/be done/doing MATH1081 (if not that’s fine too)

Note: The above pre-requisites have been addressed in the first number theory
workshop. You can find it on the CPMSoc website :). Do go through that before
reading the following notes.
1.2 Notation

1. N={1,2,3---}

2. ]P>n={p€IP’:p|n, nEN}

3. Any problem in the problem section that is starred (*) is a standard
theorem as well and therefore is highly recommended to be learnt.



2 FEuclid’s Proof

There are infinitely many primes! A fact that seems intuitively obvious, yet
we shall present a proof (or rather we shall present Euclid’s proof). Before
proceeding to the proof we present a lemma.

Lemma (Fundamental Theorem of Arithmetic): Every positive inte-
ger n > 1 can be written as the product of primes uniquely up to ordering.

Theorem: There are infinitely many primes!

Proof. We proceed by assuming that there are finitely many primes

P= {p17p27 o 7pn}7
we do not bother ourselves with the ordering of the elements in the set of primes

denoted by P.

Consider the following:
n=piopntl,

the above leaves a remainder of 1 when divided by each of the primes in the
set Pi.e, its not divisible by any prime in P. However by the FTA n must be
divisible by a prime p,y1 ¢ P, which is a contradiction since we assumed the
set of all primes is finite. Hence P must be infinite. O

3 Fermat’s Little Theorem and Generalizations

3.1 Fermat’s Little Theorem

Fermat’s little theorem can be really use full in considering a* (mod n), and is
a fundamental theorem in elementary number theory.

The theorem tells us how to treat powers of an integer modulo a natural
number. And is essential for building up understanding of divisibility between
different forms of numbers.

Before proceeding to proving Fermat’s Little Theorem, we prove a little
lemma,

Lemma: If p is a prime then,
(a+b)P =d?+0b” (mod p),
where a,b € Z.

Proof.
P

(a+b)P=>"
k=

<Z) afbPF = P 4 BP + pM, M € 7.
0



Corollary: For p € P (Induction),

p

Z a; | = z a?  (mod p),

1<i<n 1<i<n

where a; € Z,Vi. O

Fermat’s Little Theorem : For a € Z and p € P such that ged(a,p) =1
we have,
a?=a (modp) <= a’'=1 (modp).

Proof. Note that for ged(a,p) =1, a,p € N,

a times a times

a=(14+1+--+1)’=(1+1+---+1)=a (mod p)

3.2 Euler’s Totient Theorem

One generalization of Fermat’s Little Theorem is what’s known as Euler’s To-
tient Theorem. Euler’s Totient Theorem is naturally motivated through a spe-
cific counting problem. The Euler’s ¢(n) counts the number of integers k such
that ged(k,n) = 1,k € Z/nZ.

The precise formulation is; for n € N — {1}

o(n) = |{a € Zy : ged(a,n) = 1}|,

we can define or check through the definition that ¢(1) = 1.
Note: the elements in {a € Z,, : ged(a,n) = 1} are also called units.

We present two important lemmas, that are not only important on their own
but also are precursors of a method to proving an explicit formulation of Euler’s
Totient function.

Lemma: For p € P and a € N,

(p(pa) — pa _pa—l_

Proof. We simply use the inclusion-exclusion principle to arrive at,
p(l

e(p*) =p* — [{b: 1 <b<p” p|b}| =p"—;



Lemma: If m,n € N and ged(m,n) =1, then

p(mn) = p(m)p(n).
This makes ¢ multiplicative.

Proof. Consider the following matrix:

1 2 e m
m+1 m+ 2 e 2m

¢ = . . |
mn—1)+1 mn—-1)+1 -+ mn

there are p(mn) numbers in the matrix above that are relatively prime to mn.

However, note that there are also ¢(m) columns containing containing those
elements in the table that are relatively prime to m. Then we take note that
there are p(n) elements in each ¢(m) columns that are relatively prime to n,
therefore there are p(m)p(n) elements that are co-prime to mn.

S p(mn) = p(m)e(n).

Note: For proving that there are o(n) elements in each ¢(m) columns,
consider each element modulo n and try to map it to all integers from 0 to
n— 1.

O
Theorem: Let ¢ : N — N then,
1
p(n)=n H 1—=.
pEP p
Proof. This is a corollary of the two Lemmas presented above. O

Theorem (Euler’s Theorem ): If n € N, and ¢ : N — N,
a?™ =1 (mod n).

Note: We see that if n = p then ¢(p) = p — 1, and hence the above turns
into Fermat’s.

Proof.
Consider the set of units modulo n

R = {.1'1,.’1,‘2,"' axgo(n)}a



where 1 < z; < m — 1, ged(x;,n) = 1 and all the z; are distinct. We consider
the left coset ,
aR = {aa:l, ‘e 7@$¢(n)}-

Since multiplying by a is a bijection we have that aR = R, therefore we have
that

©(n) @(n)
H T = H (az;) (modn), <= a®™ =1 (mod n)
i=1 i=1
O
4 Problems

4.1 Introductory Problems

1. Give an example of 20 consecutive numbers being composite.

2. Prove the claim : If one wishes to find prime factor of n € N, then they
should check divisibility against all prime factors up to [/n].

3. Find n such that 27|31024 — 1.

4. Let p > 7 be a prime. Prove that the number

11---1
—_—

(p—1)1’s
is divisible by p.

5. Determine with proof whether following is an integer or not :

/19761977 4 19781979,

6. Prove that for m,n € N
me(n) 4 pe(m) =1 (mod mn),
whenever ged(m,n) = 1.
4.2 Intermediate Problems
1. (IMO 2005) Consider the sequence {a1,asz,-- -} defined by
ap=2"+3"+6" -1

for all positive integers n. Determine all positive integers that are rela-
tively prime to every term of the sequence.



. Determine the last three digits of the number

920032002°7"

. (Simon Marais 2021) Define the sequence of integers aj,as, - by a; =1
and
an41 = (Tl +1- ng(ana Tl)) X Gp

for all integers > 1. Prove that % =n <= ncPorn=1.

. Give an example of 11 consecutive positive integers the sum of whose
squares is a perfect square.

. (Wilson’s Theorem)” A natural number n > 1 is prime <=
(n—1!'=-1 (mod n).

Hint: Consider the polynomial g(z) = (z — 1)(x — 2) -+ (z — (p — 1)).



