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CPMSOCCombinatorial Geometry
Combinatorial geometry is a hybrid between the topics of combinatorics and geometry.

Often, combinatorial geometry problems are posed in geometric terms and but require a
combination of geometric and combinatorial ideas in their solution.

While classical geometry problems tend to have only a small number of points in the
diagram, combinatorial geometry problems can often have any arbitrary number of points
and you may be asked to prove a statement for large numbers of points.
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CPMSOCUsing Proof by Contradiction
Example

Is it possible to colour every point on a circle using the two colours white and black so
that there is no isosceles triangle whose vertices all have the same colour?

Draw a diagram!
After trying for a while, you might be convinced that the task is impossible.

So let’s assume that it is possible to aim for a contradiction.
Then we can choose two points A and B of the same colour,
say white.

Choose point X so that A is the midpoint of arc
⌢
XB to create

the isosceles triangle △AXB, which forces X to be blue.
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CPMSOCUsing Proof by Contradiction
Example

Is it possible to colour every point on a circle using the two colours white and black so
that there is no isosceles triangle whose vertices all have the same colour?

Similarly, if we choose point Y to satisfy AB = BY and B
between A and Y , then Y must also be blue.

Choose P to be on the minor arc of the circle halfway between
A and B. Then triangles △ABP and △XPY are isosceles so
we cannot colour P anything, which is a contradiction.

There is a slight gap in the proof in the cases where the five
points are not all distinct. These cases can be solved
separately.
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CPMSOCUsing Proof by Contradiction
Example

Is it possible to colour every point on a circle using the two colours white and black so
that there is no isosceles triangle whose vertices all have the same colour?

Another solution is to consider five points equally spaced around the circle and noticing
that any three of the points form an isosceles triangle.

Applying the pigeonhole principle leads to the conclusion.
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CPMSOCExtremal Principle
Sometimes we can pick a very specific object in a combinatorial geometry problem that is
"extremal" in some sense, such as being the greatest / least or the best / worst with
respect to some property.
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CPMSOCExtremal Principle
Example

We are given a set of discs in the plane with pairwise disjoint interiors. Each disc is
tangent to at least six other discs in the family. Prove that there are infinitely many discs
in the set.

Assume (for contradiction) that there are only finitely many discs. Then there is a disc D
of minimal radius r.

But there is only room for there to be exactly six discs, all of radius r around D.
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CPMSOCExtremal Principle
Example

We are given a set of discs in the plane with pairwise disjoint interiors. Each disc is
tangent to at least six other discs in the family. Prove that there are infinitely many discs
in the set.

If we apply the same argument to each of these discs and so on, we can expand
outwards forever to generate infinitely many discs of radius r, giving us a contradiction.
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CPMSOCPerturbation
Sometimes objects such as points or lines may not be exactly in the position that we want
them in. Often it is possible to shuffle the configuration slightly to rectify this.
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CPMSOCPerturbation
Example

Given n points in the plane, no three of which are collinear, show it is possible to join
them up in sequence so that we have a broken line consisting of n− 1 segments, no two
of which cross each other.

The points lie in the x, y plane. If we label the points P1, P2, . . . , Pn according to increasing
x-coordinate, then we could simply join P1 to P2, P2 to P3, and so on.

However, we cannot guarantee that the x-coordinates are all distinct. Perhaps we could
rotate the configuration in the plane so that all the x-coordinates are distinct?

Indeed, all we have to do is to rotate the configuration so that the y-axis is not parallel to
any of the lines formed by joining all

(
n
2

)
pairs of points, so this completes the problem.
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CPMSOCInduction
Often, combinatorial geometry problems where we can build examples with a larger set of
points from a smaller set of points can be approached by mathematical induction.
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CPMSOCInduction
Example

Given 1002 distinct points in the plane, we join every pair of points with a line segment
and colour its midpoint red.

Show that there are at least 2001 red points.

We prove by induction that for n ≥ 2 points there are at least 2n− 3 red points. This is
clearly true for n = 2.

Suppose that the result is true for n = 2, 3, . . . ,m where m ≥ 2. Consider an arrangement
of m+ 1 points which we can assume to have distinct x− coordinates by a perturbation
argument. Label these points as A1, A2, . . . Am, Am+1 by increasing x− coordinate.
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CPMSOCInduction
Example

Given 1002 distinct points in the plane, we join every pair of points with a line segment
and colour its midpoint red.

Show that there are at least 2001 red points.

By assumption we have at least 2m− 3 red points from the midpoints of A1, A2, . . . , Am.

The midpoints of Am+1Am−1 and Am+1Am are distinct and both are to the right of all the
red points considered so far. This gives us at least 2m− 1 = 2(m+ 1)− 3 red points in all,
which completes the proof.
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CPMSOCConvex Hull
Consider a wooden board with some nails hammered into it. When you take a rubber
band and stretch it around the area occupied by the nails, you end up with a polygon
whose angles are all less than or equal to 180◦.

The region occupied by this polygon is called the convex hull of the points.

The general notion of a convex hull is defined as follows. A set S is convex if for any two
points A and B in S, the whole line segment AB lies entirely in S. It can be proven that
the intersection of convex sets is also a convex set.

The convex hull of a set of points T is defined as the intersection of all convex sets
containing T . It is also the smallest convex set containing T .
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CPMSOCConvex Hull
Example

Let S be a set of five distinct points in the plane. Show that there exist three points A, B,
C such that 108◦ ≤ ∠ABC ≤ 180◦.

Consider the perimeter of the convex hull. If it is five points (forming a convex pentagon)
then since the angle sum of the pentagon is 540◦ then at least one of the interior angles
must be between 540◦/5 = 108◦ and 180◦.
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CPMSOCConvex Hull
Example

Let S be a set of five distinct points in the plane. Show that there exist three points A, B,
C such that 108◦ ≤ ∠ABC ≤ 180◦.

If the convex hull is a quadrilateral then divide it into two triangles as shown.

The fifth point must be inside one of the triangles. Join the fifth point to the vertices of the
triangle it lies inside.
Now consider the three angles around the fifth point created by the three segments.
These angles are each at most 180◦ and add up to 360◦ so we can find an angle that is
also at most 360◦/3 = 120◦.
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CPMSOCConvex Hull
Example

Let S be a set of five distinct points in the plane. Show that there exist three points A, B,
C such that 108◦ ≤ ∠ABC ≤ 180◦.

If the convex hull is a triangle then again we have a triangle with a point inside it (in fact
two points) in its interior, so we can find an angle in the desired range using a similar
argument as before.

If the convex hull is a line segment, then all the points are collinear so any three of them
form a straight angle.
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CPMSOCPigeonhole Principle
Example

Six points are given inside an equilateral triangle of area 4. Prove that among nine points
which include the three vertices of the triangle and the six points, three of these form a
triangle of area at most 1.

Divide the triangle up into four equilateral triangles of area 1.

Since there are nine points altogether then by the pigeonhole principle at least three of
these points lie inside or on the boundary of one of these four triangles and thus define a
triangle of area at most 1.

In fact more is true! We can sharpen the result from 1 to 4
13 as follows.
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CPMSOCPigeonhole Principle
Example

Six points are given inside an equilateral triangle of area 4. Prove that among nine points
which include the three vertices of the triangle and the six points, three of these form a
triangle of area at most 1.

Place the first point inside the triangle and use this point to subdivide the original triangle
into three smaller triangles.

Next place the second point. This will fall inside one of the three smaller triangles, or on
one (inner) edge. Either way, we will increase the number of triangles by 2 each time.

Continuing this procedure leads us to subdivide the original triangle into 13 smaller
triangles using the six points. Thus, one of the triangles will have area at most 4

13 .
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