

Competitive Programming and Mathematics Society

Functional Equations Term 3, Workshop 1

CPMSoc Mathematics

What is a Functional Equation

Functional equations are equations where the unknowns are functions, rather than a traditional variable.

Functional equations are equations where the unknowns are functions, rather than a traditional variable.

For example:

- f(xy) = f(x)f(y)
- **2** f(x)f(y) = f(x+y)
- 3 f(x) + f(y) = f(xy)
- 4 f(x+y) = f(x) + f(y)

5
$$f(x+y) = \frac{f(x)+f(y)}{1-f(x)f(y)}$$
.

Functional equations are equations where the unknowns are functions, rather than a traditional variable

For example:

- 1 f(xy) = f(x)f(y)
- **2** f(x)f(y) = f(x+y)
- 3 f(x) + f(y) = f(xy)
- 4 f(x+y) = f(x) + f(y)
- 5 $f(x+y) = \frac{f(x)+f(y)}{1-f(x)f(y)}$.

Can you guess a possible solution to these functional equations?

Example

Find all functions f such that $f : \mathbb{Q} \longrightarrow \mathbb{Q}, f(1) = 2, f(xy) = f(x)f(y) - f(x+y) + 1.$

Three of the most common things mentioned in functional equation problems:

Example

Find all functions f such that $f : \mathbb{Q} \longrightarrow \mathbb{Q}, f(1) = 2, f(xy) = f(x)f(y) - f(x+y) + 1.$

Three of the most common things mentioned in functional equation problems:

the domain and codomain

Example

Find all functions f such that $f : \mathbb{Q} \longrightarrow \mathbb{Q}, f(1) = 2, f(xy) = f(x)f(y) - f(x+y) + 1.$

Three of the most common things mentioned in functional equation problems:

1 the domain and codomain

2 the value of f at some number(s)

Example

Find all functions f such that $f : \mathbb{Q} \longrightarrow \mathbb{Q}, f(1) = 2, f(xy) = f(x)f(y) - f(x+y) + 1.$

Three of the most common things mentioned in functional equation problems:

1 the domain and codomain

2 the value of f at some number(s)

3 the main functional equation(s).

Cauchy's functional equation asks us to find functions which satisfy

f(x+y) = f(x) + f(y).

Cauchy's functional equation asks us to find functions which satisfy

f(x+y) = f(x) + f(y).

The idea is to work out the value of f(x) for more and more values of x until we have the entire function. We start off with non-negative integers.

Cauchy's functional equation asks us to find functions which satisfy

f(x+y) = f(x) + f(y).

The idea is to work out the value of f(x) for more and more values of x until we have the entire function. We start off with non-negative integers.

A good starting point with functional equations is doing simple substitutions such as setting the variables to be 0, 1, -1 or equal to each other

Cauchy's functional equation asks us to find functions which satisfy

f(x+y) = f(x) + f(y).

The idea is to work out the value of f(x) for more and more values of x until we have the entire function. We start off with non-negative integers.

A good starting point with functional equations is doing simple substitutions such as setting the variables to be 0, 1, -1 or equal to each other

Substituting x = y = 0 yields

$$f(0) + f(0) = f(0)$$

which then implies that

$$f(0) = 0.$$

A useful strategy for solving functional equations is keep a suspected answer in the back of your mind while solving the functional equation, yet remain open to other possibilities.

CPMSOC

A useful strategy for solving functional equations is keep a suspected answer in the back of your mind while solving the functional equation, yet remain open to other possibilities.

We can try guessing the value of f(1) but with f(x) = cx as a possible solution, we let f(1) = c and try obtaining f(2),

f(2) = f(1) + f(1) = 2c.

A useful strategy for solving functional equations is keep a suspected answer in the back of your mind while solving the functional equation, yet remain open to other possibilities.

We can try guessing the value of f(1) but with f(x) = cx as a possible solution, we let f(1) = c and try obtaining f(2),

f(2) = f(1) + f(1) = 2c.

In fact, putting y = 1 in the functional equation gives

$$f(x+1) = f(x) + f(1) = f(x) + c.$$

From here you should be able to prove by induction that f(x) = cx for all non-negative integers x and some real number c.

Since we have already deduced that f(0) = 0, it makes sense to try the substitution y = -x in the functional equation. This leads to

$$f(0) = f(x) + f(-x) \implies f(-x) = -f(x).$$

This piece of information tells us that f(x) = cx holds for every integer, whether positive, negative or zero.

Since we have already deduced that f(0) = 0, it makes sense to try the substitution y = -x in the functional equation. This leads to

$$f(0) = f(x) + f(-x) \implies f(-x) = -f(x).$$

This piece of information tells us that f(x) = cx holds for every integer, whether positive, negative or zero.

Now for any integer m and positive integer n, we have

$$f\left(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n}\right) = f\left(\frac{m}{n}\right) + f\left(\frac{m}{n}\right) + \dots + f\left(\frac{m}{n}\right)$$

Since we have already deduced that f(0) = 0, it makes sense to try the substitution y = -x in the functional equation. This leads to

$$f(0) = f(x) + f(-x) \implies f(-x) = -f(x).$$

This piece of information tells us that f(x) = cx holds for every integer, whether positive, negative or zero.

Now for any integer m and positive integer n, we have

$$f\left(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n}\right) = f\left(\frac{m}{n}\right) + f\left(\frac{m}{n}\right) + \dots + f\left(\frac{m}{n}\right)$$

Therefore $f(m) = nf\left(\frac{m}{n}\right)$ which implies that

$$f\left(\frac{m}{n}\right) = \frac{f(m)}{n} = \frac{cm}{n}.$$

We've now deduced that f(x) = cx for all rational numbers x and some real number c.

Example. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x+y) = f(x) + 2xy + f(y)$$

for all rational numbers x and y.

Example. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x+y) = f(x) + 2xy + f(y)$$

for all rational numbers x and y.

Initial thoughts?

Example. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x+y) = f(x) + 2xy + f(y)$$

for all rational numbers x and y.

Initial thoughts? Looks like Cauchy's F.E but has 2xy.

$$(x+y)^2 = x^2 + 2xy + y^2$$
 (!)

This verifies that $f(x) = x^2$ is a solution but is it the only solution?

Example. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x+y) = f(x) + 2xy + f(y)$$

for all rational numbers x and y.

Initial thoughts? Looks like Cauchy's F.E but has 2xy.

$$(x+y)^2 = x^2 + 2xy + y^2$$
 (!)

This verifies that $f(x) = x^2$ is a solution but is it the only solution? Now let's substitute $f(x) = g(x) + x^2$ in the hope that g(x) satisfies a simpler functional equation.

This leads to

$$g(x+y) + (x+y)^{2} = g(x) + g(y) + x^{2} + 2xy + y^{2}$$

which leaves

$$g(x+y) = g(x) + g(y)$$

CPMSoc Mathematics

Guess and Hope

This leads to

$$g(x+y) + (x+y)^{2} = g(x) + g(y) + x^{2} + 2xy + y^{2}$$

which leaves

$$g(x+y) = g(x) + g(y)$$

This is Cauchy's functional equation! The solutions to this are given by g(x) = cx and so

$$f(x) = x^2 + cx.$$

Example. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and

$$f(f(x) + y) = f(x^2 - y) + 4f(x)y$$

for all real numbers x and y.

Example. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and

$$f(f(x) + y) = f(x^2 - y) + 4f(x)y$$

for all real numbers x and y.

Substitution Ideas?

Example. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and

$$f(f(x) + y) = f(x^{2} - y) + 4f(x)y$$

for all real numbers x and y.

Substitution Ideas?

We would like to find algebraic substitutions which provide nice cancellation.

Example. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and

$$f(f(x) + y) = f(x^2 - y) + 4f(x)y$$

for all real numbers x and y.

Substitution Ideas?

We would like to find algebraic substitutions which provide nice cancellation. For example, the f(f(x) + y) motivates us to try y = -f(x), which yields

$$f(0) = f(x^{2} + f(x)) - 4f(x)^{2}.$$

Example. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and

$$f(f(x) + y) = f(x^{2} - y) + 4f(x)y$$

for all real numbers x and y.

Substitution Ideas?

We would like to find algebraic substitutions which provide nice cancellation. For example, the f(f(x) + y) motivates us to try y = -f(x), which yields

$$f(0) = f(x^2 + f(x)) - 4f(x)^2.$$

Furthermore, the term $f(x^2 - y)$ motivates us to try $y = x^2$, which yields

$$f(f(x) + x^2) = f(0) + 4f(x)x^2.$$

Now, both of the equations,

$$f(0) = f(x^{2} + f(x)) - 4f(x)^{2}.$$

$$f(f(x) + x^{2}) = f(0) + 4f(x)x^{2}.$$

have the term $f(f(x) + x^2)$

Now, both of the equations,

$$f(0) = f(x^{2} + f(x)) - 4f(x)^{2}.$$
$$f(f(x) + x^{2}) = f(0) + 4f(x)x^{2}.$$

0 0

have the term $f(f(x) + x^2)$ and by eliminating this, we get

$$f(0) + 4f(x)^2 = f(0) + 4f(x)x^2 \Rightarrow f(x)^2 = f(x)x^2.$$

Now, both of the equations,

$$f(0) = f(x^{2} + f(x)) - 4f(x)^{2}.$$
$$f(f(x) + x^{2}) = f(0) + 4f(x)x^{2}.$$

have the term $f(f(x) + x^2)$ and by eliminating this, we get

$$f(0) + 4f(x)^2 = f(0) + 4f(x)x^2 \Rightarrow f(x)^2 = f(x)x^2.$$

Moving everything to the left-hand side, we get

$$f(x)(f(x) - x^2) = 0.$$

Now, both of the equations,

$$f(0) = f(x^{2} + f(x)) - 4f(x)^{2}.$$
$$f(f(x) + x^{2}) = f(0) + 4f(x)x^{2}.$$

~

have the term $f(f(x) + x^2)$ and by eliminating this, we get

$$f(0) + 4f(x)^2 = f(0) + 4f(x)x^2 \Rightarrow f(x)^2 = f(x)x^2.$$

Moving everything to the left-hand side, we get

$$f(x)(f(x) - x^2) = 0.$$

Hence the solution is $f(x) = x^2$ as $f(x) \neq 0$ for $x \neq 0$

Injective, Surjective and Bijective

A function is said to be injective or one-to-one if it doesn't take the same value twice. That is, f(x) = f(y) implies that x = y.

Injective, Surjective and Bijective

A function is said to be injective or one-to-one if it doesn't take the same value twice. That is, f(x) = f(y) implies that x = y.

A function is said to be surjective or onto if it takes on all possible values in the codomain. That is, for every *b* in the codomain, there exists a in the domain such that f(a) = b.

A function is said to be injective or one-to-one if it doesn't take the same value twice. That is, f(x) = f(y) implies that x = y.

A function is said to be surjective or onto if it takes on all possible values in the codomain. That is, for every *b* in the codomain, there exists a in the domain such that f(a) = b.

A function is said to be bijective if it is both injective and surjective.

A function is said to be injective or one-to-one if it doesn't take the same value twice. That is, f(x) = f(y) implies that x = y.

A function is said to be surjective or onto if it takes on all possible values in the codomain. That is, for every *b* in the codomain, there exists a in the domain such that f(a) = b.

A function is said to be bijective if it is both injective and surjective. The big advantage of having a bijective function f is that there exists an inverse function f^{-1} which satisfies

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$

Example. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies

 $f(xf(x) + f(y)) = f(x)^2 + y$

for all real numbers x and y. Prove that f is bijective.

Example. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies

 $f(xf(x) + f(y)) = f(x)^2 + y$

for all real numbers x and y. Prove that f is bijective.

Surjectivity. We let x = 0 and vary y. This gives

 $f(f(y)) = f(0)^2 + y.$

Example. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies

 $f(xf(x) + f(y)) = f(x)^2 + y$

for all real numbers x and y. Prove that f is bijective.

Surjectivity. We let x = 0 and vary y. This gives

 $f(f(y)) = f(0)^2 + y.$

By substituting $b = f(0)^2 + y$, we get

 $f(f(b - f(0)^2)) = b$

and so

f(a) = b

where $a = f(b - f(0)^2)$.

Example. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies

 $f(xf(x) + f(y)) = f(x)^2 + y$

for all real numbers x and y. Prove that f is bijective.

Surjectivity. We let x = 0 and vary y. This gives

 $f(f(y)) = f(0)^2 + y.$

By substituting $b = f(0)^2 + y$, we get

 $f(f(b - f(0)^2)) = b$

and so

$$f(a) = b$$

where $a = f(b - f(0)^2)$. Since there is an *a* for every *b* such that f(a) = b, f(x) is surjective.

CPMSoc Mathematics

Injectivity. We assume that $f(y_1) = f(y_2)$ and hope to deduce that $y_1 = y_2$. But if $f(y_1) = f(y_2)$, then we have

a)

Injectivity. We assume that $f(y_1) = f(y_2)$ and hope to deduce that $y_1 = y_2$. But if $f(y_1) = f(y_2)$, then we have

$$f(xf(x) + f(y_1)) = f(xf(x) + f(y_2))$$

$$\Rightarrow f(x)^2 + y_1 = f(x)^2 + y_2.$$

Injectivity. We assume that $f(y_1) = f(y_2)$ and hope to deduce that $y_1 = y_2$. But if $f(y_1) = f(y_2)$, then we have

$$f(xf(x) + f(y_1)) = f(xf(x) + f(y_2))$$

$$\Rightarrow f(x)^2 + y_1 = f(x)^2 + y_2.$$

Therefore, we can conclude that $y_1 = y_2$ and so f must be injective.

Since we have shown that f is both injective and surjective, we now know that f is bijective.

It is the idea that f(g(h(x))) can be evaluated in two different ways

It is the idea that f(g(h(x))) can be evaluated in two different ways

 $\underbrace{f(g(h(x)))}_{f(g(h(x)))}$ or $f(\underbrace{g(h(x))}_{f(g(h(x)))})$

Example. Do there exist functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that

$$f(g(x)) = x^2$$
 and $g(f(x)) = x^3$

for all real numbers x?

It is the idea that f(g(h(x))) can be evaluated in two different ways

 $\underbrace{f(g(h(x)))}_{f(g(h(x)))}$ or $f(\underbrace{g(h(x))}_{f(g(h(x)))})$

Example. Do there exist functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that

$$f(g(x)) = x^2$$
 and $g(f(x)) = x^3$

for all real numbers x?

The following chain of implications tells us that the function f must be injective.

$$f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow a^3 = b^3 \Rightarrow a = b.$$

Now we can apply the associative trick,

$$\underbrace{f(g}(f(x))) = f(x)^2 \quad \text{and} \quad f(\underbrace{g(f}(x))) = f(x^3)$$

CPMSOC

Now we can apply the associative trick,

$$\underbrace{f(g}(f(x))) = f(x)^2 \quad \text{and} \quad f(\underbrace{g(f}(x))) = f(x^3)$$

Therefore,

$$f(x)^2 = f(x^3)$$

for all values of x. In particular, we know that

$$f(-1) = f(-1)^2$$
, $f(0) = f(0)^2$ and $f(1) = f(1)^2$

What does this mean?

Now we can apply the associative trick,

$$\underbrace{f(g}(f(x))) = f(x)^2 \quad \text{and} \quad f(\underbrace{g(f}(x))) = f(x^3)$$

Therefore,

$$f(x)^2 = f(x^3)$$

for all values of x. In particular, we know that

$$f(-1) = f(-1)^2$$
, $f(0) = f(0)^2$ and $f(1) = f(1)^2$

What does this mean?

At least two of these must be equal to either 1 or 0.

Now we can apply the associative trick,

$$\underbrace{f(g(f(x))) = f(x)^2}_{f(x)} \text{ and } f(\underbrace{g(f(x))) = f(x^3)}_{f(x)}$$

Therefore,

$$f(x)^2 = f(x^3)$$

for all values of x. In particular, we know that

$$f(-1) = f(-1)^2$$
, $f(0) = f(0)^2$ and $f(1) = f(1)^2$

What does this mean?

At least two of these must be equal to either 1 or 0.

Contradiction!!! f is injective.

CPMSoc Mathematics

Example. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m + f(n) + mf(n)) = m + mn + f(n)$$

for all integers m and n.

Example. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m + f(n) + mf(n)) = m + mn + f(n)$$

for all integers m and n.

Substituting m = f(p) for any integer p,

$$f(f(p) + f(n) + f(p)f(n)) = f(p) + f(p)n + f(n)$$

Example. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m + f(n) + mf(n)) = m + mn + f(n)$$

for all integers m and n.

Substituting m = f(p) for any integer p,

$$f(f(p) + f(n) + f(p)f(n)) = f(p) + f(p)n + f(n)$$

What do you notice?

Example. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m + f(n) + mf(n)) = m + mn + f(n)$$

for all integers m and n.

Substituting m = f(p) for any integer p,

$$f(f(p) + f(n) + f(p)f(n)) = f(p) + f(p)n + f(n)$$

What do you notice? LHS Symmetry

Example. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m + f(n) + mf(n)) = m + mn + f(n)$$

for all integers m and n.

Substituting m = f(p) for any integer p,

$$f(f(p) + f(n) + f(p)f(n)) = f(p) + f(p)n + f(n)$$

What do you notice? LHS Symmetry

This means RHS Symmetry!

$$f(p) + f(p)n + f(n) = f(n) + f(n)p + f(p)$$

Hence

f(p)n = f(n)p

for all integers p and n.

Hence

$$f(p)n = f(n)p$$

for all integers p and n.

Substituting p = 1, we deduce that f(n) = f(1)n = cn.

Hence

$$f(p)n = f(n)p$$

for all integers p and n.

Substituting p = 1, we deduce that f(n) = f(1)n = cn.

We must check our solutions by plugging f(n) = cn into the original functional equation. We deduce that c = 1. So, the only possible solution is f(n) = n.

An *involution* is a function which is its own inverse. That is, a function f which satisfies

f(f(x)) = x

for all x.

An *involution* is a function which is its own inverse. That is, a function f which satisfies

f(f(x)) = x

for all x.

Example. Find all functions $g: \mathbb{R} \setminus \{\frac{2}{3}\} \to \mathbb{R}$ such that

$$x - g(x) = \frac{1}{2}g\left(\frac{2x}{3x - 2}\right)$$

for all real numbers $x \neq \frac{2}{3}$

An *involution* is a function which is its own inverse. That is, a function f which satisfies

f(f(x)) = x

for all x.

Example. Find all functions $g: \mathbb{R} \setminus \{\frac{2}{3}\} \to \mathbb{R}$ such that

$$x - g(x) = \frac{1}{2}g\left(\frac{2x}{3x - 2}\right)$$

for all real numbers $x \neq \frac{2}{3}$

This functional equation compares two different values at g at one at x and one at $\frac{2x}{3x-2}$.

CPMSOC

f(f(x)) = x

for all x.

Example. Find all functions $g: \mathbb{R} \setminus \{\frac{2}{3}\} \to \mathbb{R}$ such that

$$x - g(x) = \frac{1}{2}g\left(\frac{2x}{3x - 2}\right)$$

for all real numbers $x \neq \frac{2}{3}$

This functional equation compares two different values at g at one at x and one at $\frac{2x}{3x-2}$.

If x is related to
$$\frac{2x}{3x-2}$$
, then what is $\frac{2x}{3x-2}$ related to?

Let's try replacing x with $\frac{2x}{3x-2}$:

$$\frac{2x}{3x-2} - g\left(\frac{2x}{3x-2}\right) = \frac{1}{2}g\left(\frac{2(\frac{2x}{3x-2})}{3(\frac{2x}{3x-2})-2}\right)$$

Let's try replacing x with $\frac{2x}{3x-2}$:

$$\frac{2x}{3x-2} - g\left(\frac{2x}{3x-2}\right) = \frac{1}{2}g\left(\frac{2(\frac{2x}{3x-2})}{3(\frac{2x}{3x-2})-2}\right)$$

A little algebra reveals that

$$\frac{2(\frac{2x}{3x-2})}{3(\frac{2x}{3x-2})-2} = \frac{4x}{6x-2(3x-2)} = x.$$

Let's try replacing x with $\frac{2x}{3x-2}$:

$$\frac{2x}{3x-2} - g\left(\frac{2x}{3x-2}\right) = \frac{1}{2}g\left(\frac{2(\frac{2x}{3x-2})}{3(\frac{2x}{3x-2})-2}\right)$$

A little algebra reveals that

$$\frac{2(\frac{2x}{3x-2})}{3(\frac{2x}{3x-2})-2} = \frac{4x}{6x-2(3x-2)} = x.$$

So we now have the equations

$$x - g(x) = \frac{1}{2}g\left(\frac{2x}{3x - 2}\right) \quad \text{and} \quad \frac{2(\frac{2x}{3x - 2})}{3(\frac{2x}{3x - 2}) - 2} = \frac{4x}{6x - 2(3x - 2)} = x.$$

You can think of these as two simultaneous equations, which you can solve for both g(x) and $g\left(\frac{2x}{3x-2}\right)$.

You can think of these as two simultaneous equations, which you can solve for both g(x) and $g\left(\frac{2x}{3x-2}\right)$. Do this and you'll find that

$$g(x) = \frac{4x(x-1)}{3x-2},$$

which is indeed the solution to the functional equation.

You can think of these as two simultaneous equations, which you can solve for both g(x) and $g\left(\frac{2x}{3x-2}\right)$. Do this and you'll find that

$$g(x) = \frac{4x(x-1)}{3x-2},$$

which is indeed the solution to the functional equation.

Whats going on here?

References I

Angelo Di Pasquale, Norman Do, Daniel Mathews Problem Solving Tactics. AMT-Publishing, 2014.

Thanks for listening!