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CPMSOCLinear Mappings
A mapping T : V → W between vector spaces that share the same field is called linear
when:

T (−→u +−→v ) = T (u) + T (v)

T (a−→v ) = aT (−→v )

Alternatively, T (a−→u + b−→v ) = aT (−→u ) + bT (−→v ).

Example

Show that the derivative is a linear mapping from the set of infinitely differentiable func-
tions, C∞, to itself.

D(af(x) + bg(x)) = limh→0
(af(x+h)+bg(x+h))−(af(x)+bg(x))

h =

a
(
limh→0

f(x+h)−f(x)
h

)
+ b

(
limh→0

g(x+h)−g(x)
h

)
= aD(f(x)) + bD(g(x)).
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CPMSOCMatrix Representation Theorem
If a vector space has a basis e1, e2, . . ., we can write any vector as a linear combination of
these vectors.

This implies that T (−→v ) = T (a1e1 + a2e2 + . . .) = a1T (e1) + a2T (e2) + . . . for some
collection of scalars a1, a2, . . .
Let e′i = T (ei); then the matrix product

(e′1|e′2| . . .) ·

a1
a2
...


gives the coordinates of T (−→v ) in terms of the chosen basis.
That is, for every vector space with a basis (e.g. span{sin(x), cos(x)}), a linear mapping
from that vector space to itself (e.g. d

dx ) can be represented as a matrix with dimension

equal to that of the vector space (e.g.
(
0 −1
1 0

)
).

Matrix multiplication in general is defined as (AB)i,j =
∑

k Ai,kBk,j .
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CPMSOCApplications of Matrices
Why do we care about matrices?

Example

Let Fn denote the size of a rabbit population in month n, such that F1 = F2 = 1, Fn+2 =
Fn+1 + Fn.
Show that Fm+n+1 = Fm+1Fn+1 + FmFn.

Consider the matrix M =

(
1 1
1 0

)
.

An inductive argument shows that Mn =

(
Fn+1 Fn

Fn Fn−1

)
.

Notice that Mm+n = MmMn by associativity, i.e.(
Fm+n+1 Fm+n

Fm+n Fm+n−1

)
=

(
Fm+1 Fm

Fm Fm−1

)(
Fn+1 Fn

Fn Fn−1

)
.

Since (AB)i,j =
∑

k Ai,kBk,j , comparing top-left entries demonstrates the desired identity.
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CPMSOCDeterminants
For an n× n matrix A, we compute det(A) using the recursive formula

|A| = det(A) =
∑

1≤i≤n

(−1)i+1A1,i det(A\(1, ·)\(·, i)).

For example, ∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ .
A matrix is invertible if and only if its determinant is nonzero.
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CPMSOCDeterminants
Example (Vandermonde Determinants)

Let x1, x2, . . . xn be arbitrary numbers for some n ≥ 1.
Computer the determinant

det(Vn) =

∣∣∣∣∣∣∣∣∣
xn−1
1 xn−1

2 . . . xn−1
n

...
...

. . .
...

x1 x2 . . . xn
1 1 . . . 1

∣∣∣∣∣∣∣∣∣ .

Notice that the determinant will be an (n− 1)-degree polynomial in xn.
The roots will be x1, x2, . . . xn−1 and the leading coefficient will be a Vandermonde
determinant of order (n− 1), multiplied by (−1)n+1.
In other words, det(Vn) = (−1)n+1 det(Vn−1)(xn − x1)(xn − x2) . . . (xn − xn−1).
An inductive argument shows that det(Vn) =

∏
i>j(xi − xj).
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CPMSOCInversion
Example

Let A be an n × n symmetric matrix (i.e., A = AT ) with positive real entries, for some
n ≥ 2.
Show that A−1 has at most n2 − 2n entries equal to zero.

Observe that
∑

k Ai,kA
−1
k,j = δi,j .

Since A is positive, A−1 has at least one positive and at
least one negative entry for each value of j.
Hence every column of A−1 contains at least two nonzero entries. This implies the
desired result.
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CPMSOCIndependence
Let’s generalise what we mean by independence.
Take a set V. We’ll call some of its subsets independent - in particular, I0, I1, I2, . . .
We require the following properties:

The empty set is independent
Every subset of an independent set is independent
If A and B are independent sets, and A is bigger than B, then there’s some element
in A we can add to B to get a new independent set

The dimension is the largest number of elements in an independent set.
If a set V and subsets I0, I1, I2, . . . satisfy these properties, we call them a matroid.

CPMSoc Mathematics Linear Algebra 16.07.2021 8 / 16



CPMSOCIndependence
Let’s generalise what we mean by independence.
Take a set V. We’ll call some of its subsets independent - in particular, I0, I1, I2, . . .
We require the following properties:

The empty set is independent

Every subset of an independent set is independent
If A and B are independent sets, and A is bigger than B, then there’s some element
in A we can add to B to get a new independent set

The dimension is the largest number of elements in an independent set.
If a set V and subsets I0, I1, I2, . . . satisfy these properties, we call them a matroid.

CPMSoc Mathematics Linear Algebra 16.07.2021 8 / 16



CPMSOCIndependence
Let’s generalise what we mean by independence.
Take a set V. We’ll call some of its subsets independent - in particular, I0, I1, I2, . . .
We require the following properties:

The empty set is independent
Every subset of an independent set is independent

If A and B are independent sets, and A is bigger than B, then there’s some element
in A we can add to B to get a new independent set

The dimension is the largest number of elements in an independent set.
If a set V and subsets I0, I1, I2, . . . satisfy these properties, we call them a matroid.

CPMSoc Mathematics Linear Algebra 16.07.2021 8 / 16



CPMSOCIndependence
Let’s generalise what we mean by independence.
Take a set V. We’ll call some of its subsets independent - in particular, I0, I1, I2, . . .
We require the following properties:

The empty set is independent
Every subset of an independent set is independent
If A and B are independent sets, and A is bigger than B, then there’s some element
in A we can add to B to get a new independent set

The dimension is the largest number of elements in an independent set.
If a set V and subsets I0, I1, I2, . . . satisfy these properties, we call them a matroid.

CPMSoc Mathematics Linear Algebra 16.07.2021 8 / 16



CPMSOCIndependence
Let’s generalise what we mean by independence.
Take a set V. We’ll call some of its subsets independent - in particular, I0, I1, I2, . . .
We require the following properties:

The empty set is independent
Every subset of an independent set is independent
If A and B are independent sets, and A is bigger than B, then there’s some element
in A we can add to B to get a new independent set

The dimension is the largest number of elements in an independent set.
If a set V and subsets I0, I1, I2, . . . satisfy these properties, we call them a matroid.

CPMSoc Mathematics Linear Algebra 16.07.2021 8 / 16



CPMSOCRank
The row rank of M is the dimension of the span of its rows.
The column rank of M is defined similarly.

These are always equal. In the special case of invertible matrices, we can see this by
reducing them to RREF (since the required row operations will not change the rank), and
observing that the entries off the diagonal are all zero.

RREF =


a1 0 0 . . .
0 a2 0 . . .
0 0 a3 . . .
...

...
...

. . .
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CPMSOCIndependence
Example

Let Z denote the set of points in Rn whose coordinates are 0 or 1. Let k be a fixed
number between 0 and n. If V is a k-dimensional subspace of Rn, find the maximum
possible number of points in Z ∩ V .

Consider the matrix M whose rows are the elements of Z ∩ V . By construction, the span
of the rows (and therefore of the columns) is at most k-dimensional.

From the columns of M , choose a set of k columns which spans the column space.
For each row, we only need to know the coordinates in these k different positions to infer
the rest of the coordinates.
There are therefore at most 2k rows.
Now take V to be the span of the set of vectors having all possible entries in the first k
rows, and zero thereafter. It is clear that Z ∩ V has 2k points, so this is the maximum
possible number.
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CPMSOCIndependence
Example

Let X and B0 be n × n matrices, n ≥ 1. Define Bi = Bi−1X −XBi−1, for i ≥ 1. Show
that if X = Bn2 , then X must be the zero matrix, On.

Notice that Bn2+1 = Bn2X −XBn2 = X2 −X2 = On, and similarly for higher indices
n2 + j.

Since the space of n× n matrices is n2-dimensional, the matrices B0, B1, . . . Bn2 must be
linearly dependent, i.e. we can choose scalars such that c0B0 + c1B1 + . . . cn2Bn2 = On.
Pick the first k such that ck ̸= 0. Then −ckBk = ck+1Bk+1 + . . .+ cn2Bn2 .
Applying the rule,
−ckBk+1 = −(ckBkX−ckXBk) = ck+1Bk+1X+ . . .+cnBnX−ck+1XBk+1− . . .−cn2XBn2 .
That is, −ckBk+1 = ck+1Bk+2 + . . .+ cn2Bn2+1.
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CPMSOCEigenvalues and Eigenvectors
Consider the matrix equation A−→v = λ−→v , for some fixed A.

Possible values of −→v ∈ Cn are called eigenvectors, and possible values of λ ∈ Cn are
called eigenvalues.
To find the eigenvalues, we solve the characteristic equation det(λIn −A) = 0, which is a
polynomial in λ.
In the case where these eigenvalues are each roots of multiplicity one, the matrix A can
be transformed to a diagonal matrix with a change of basis: A = BDB−1. The new basis
is called an eigenbasis, and consists of the eigenvectors of the matrix.
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CPMSOCEigenvalues and Eigenvectors
Example

Let A : V → W and B : W → V be linear maps between finite-dimensional vector
spaces. Prove that the linear maps AB and BA have the same set of nonzero eigenval-
ues, counted with multiplicity.

Choose a basis that identifies V with Rm and W with Rn.

Now represent A and B as
matrices and notice that our claim is equivalent to det(λIn −AB) = λn−m det(λIm −BA).
Assume WLOG that n ≥ m. Now transform A,B to n× n matrices A′, B′. Since
det(λIn −A′B′) = det(λIn −AB) and det(λIn −B′A′) = λn−m det(λIn −BA), we simply
require that det(λIn −A′B′) = det(λIn −B′A′). This is true in general for n× n matrices.
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CPMSOCSpectral Mapping Theorem
In physics, the set of eigenvectors of a matrix is often called its spectrum.

Theorem (Spectral Mapping Theorem)

Let A be a matrix with eigenvalues λ1, λ2, λ3, . . ., and P (x) be a polynomial.
Then the eigenvalues of P (A) are P (λ1), P (λ2), P (λ3), . . .

To prove this for the case where eigenvalues are distinct, we notice that A is a diagonal
matrix with respect to the eigenbasis, such that

P (A) = P


λ1 0 . . .

0 λ2 . . .
...

...
. . .


 =

P (λ1) 0 . . .
0 P (λ2) . . .
...

...
. . .

, which has eigenvalues as

specified.

Since the characteristic polynomial depends continuously on the entries, and
the roots of this polynomial depend continuously on its coefficients, we can "nudge" any
non-distinct eigenvalues and use a limiting argument to show that this is true in the
general case.
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CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.

By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.

Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.

Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16



CPMSOCCayley-Hamilton Theorem
Theorem (Cayley-Hamilton Theorem)

Every square matrix is a root of its characteristic polynomial.

Example

Let A and B be 2×2 matrices with determinant equal to 1. Prove that tr(AB)−(trA)(trB)+
tr(AB−1) = 0.

The characteristic polynomial of B is given by det(λI2 −B) =

∣∣∣∣λ−B1,1 B1,2

B2,1 λ−B2,2

∣∣∣∣ =
(λ−B1,1)(λ−B2,2)−B1,2B2,1 = λ2 − tr(B)λ+ detB = λ2 − tr(B) + 1.
By the Cayley-Hamilton theorem, B2 − tr(B)B + I2 = O2.
Multiply by AB−1 to obtain AB − tr(B)A+AB−1 = O2.
Taking the trace of both sides gives the desired result.

CPMSoc Mathematics Linear Algebra 16.07.2021 16 / 16


	Matrices
	Linearity
	Determinants
	Inverses

	Span and Independence
	Matroids
	Rank
	Independence

	Eigenvalues and Eigenvectors
	Spectral Mapping Theorem
	Cayley-Hamilton Theorem

