

PROBLEM SET 3

- 1 Are there $n \times n$ matrices A, B such that $AB BA = \mathcal{I}_n$?
- 2 Let A and B be real 3×3 matrices such that $\det A = \det B = \det(A+B) = \det(A-B) = 0$. Show that $\det(xA+yB) = 0$ for any $x,y \in \mathbb{R}$.
- 3 Let A be an $n \times n$ matrix such that $\sum_{j=1}^{n} |A_{i,j}| < 1$ for each i. Prove that $\mathcal{I}_n A$ is invertible.
- 4 Solve the system of linear equations

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 + x_4 = 0$$

$$\dots$$

$$x_{99} + x_{100} + x_1 = 0$$

$$x_{100} + x_1 + x_2 = 0$$

- 5 Let P be an n-th degree polynomial with complex coefficients such that $P(0), P(1), \dots P(n)$ are all integers. Prove that the polynomial n!P(x) has integer coefficients.
- 6 Let A be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix B such that ABA = A.