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CPMSOCWhat is combinatorics?
Combinatorics involves questions about the size of sets.
For example, the set of all ordered triples of numbers from X has size
|{(a, b, c) : a, b, c ∈ X}| = |X3| = |X|3 = 33 = 27.
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CPMSOCFactorisation
The Cartesian product of two sets is defined as A×B = {(a, b) : a ∈ A, b ∈ B}.
The notation A×A× . . .×A = An is also common.

Theorem (Fundamental Principle of Counting)

The cardinality of a Cartesian product is the product of the cardinalities.

Example

A restaurant kitchen has five types of meat, four types of vegetables, and six kinds of
cheese. How many kinds of pizza can the chef put on the menu?

We want to find |{Meat} × {Vegetables} × {Cheese}|=
|{Meat}| × |{Vegetables}| × |{Cheese}|= 5× 4× 6 = 120.
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CPMSOCBijection
A bijection between two sets is a one-to-one correspondence between their elements.

Which of these are examples of bijections?
The set of all cars in Australia and the set of all steering wheels in Australia
The set of all driver’s licenses in Australia and the set of all steering wheels in
Australia
The set of all positive integers and the set of all positive even integers

The equivalence relation |A| = |B| groups sets into equivalence classes by their size, or
cardinality.
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CPMSOCBijection
Example

A maths workshop has an unlimited supply of pepperoni, cheese and vegetarian pizza.
How many different ways are there to eat seven slices of pizza, not counting permuta-
tions?

Put the seven slices in a row, first pepperoni, then cheese, then vegetarian, with empty
pizza boxes between them.

P |CCCC|V V

There are now nine objects on the table: two dividers and seven slices. Choosing where
to place the dividers uniquely determines the selection of slices, and knowing the
selection of slices tells us where to place the dividers. This bijective correspondence
gives us an answer of

(
9
2

)
= 36.
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CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.

The choose function
(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .

The choose function satisfies the following properties:
Symmetry:

(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)

Pascal’s rule:
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)

Binomial theorem:
n∑

k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCThe Choose Function
Suppose we have some set N and integers k such that 0 ≤ k ≤ n = |N |.
The choose function

(
n
k

)
is defined as |{X ∈ P(N) : |X| = k}| = n!

k!(n−k)! .
The choose function satisfies the following properties:

Symmetry:
(
n
k

)
=

(
n

n−k

)
Pascal’s rule:

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
Binomial theorem:

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)k

Hockey-stick identity: (
n+ 1

k + 1

)
=

n∑
j=k

(
j

k

)

CPMSoc Mathematics Combinatorics 25.03.2021 6 / 20



CPMSOCInclusion-Exclusion
Example

An absent-minded delivery driver has n pizzas to deliver to n different addresses. In how
many ways can they deliver the pizza, one to each address, so that no pizza is delivered
to its correct address?

We will call a pizza that gets delivered to the correct address a fixed point.
Let P be the set of all permutations, and Pj be the set of all permutations where pizza j
gets correctly delivered.

Permutations with no fixed points =

|P | − |P1 ∪ P2 ∪ . . . ∪ Pn| = n!−

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣
But what is

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣?

CPMSoc Mathematics Combinatorics 25.03.2021 7 / 20



CPMSOCInclusion-Exclusion
Example

An absent-minded delivery driver has n pizzas to deliver to n different addresses. In how
many ways can they deliver the pizza, one to each address, so that no pizza is delivered
to its correct address?

We will call a pizza that gets delivered to the correct address a fixed point.
Let P be the set of all permutations, and Pj be the set of all permutations where pizza j
gets correctly delivered.

Permutations with no fixed points = |P | − |P1 ∪ P2 ∪ . . . ∪ Pn|

= n!−

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣
But what is

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣?

CPMSoc Mathematics Combinatorics 25.03.2021 7 / 20



CPMSOCInclusion-Exclusion
Example

An absent-minded delivery driver has n pizzas to deliver to n different addresses. In how
many ways can they deliver the pizza, one to each address, so that no pizza is delivered
to its correct address?

We will call a pizza that gets delivered to the correct address a fixed point.
Let P be the set of all permutations, and Pj be the set of all permutations where pizza j
gets correctly delivered.

Permutations with no fixed points = |P | − |P1 ∪ P2 ∪ . . . ∪ Pn| = n!−

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣

But what is

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣?

CPMSoc Mathematics Combinatorics 25.03.2021 7 / 20



CPMSOCInclusion-Exclusion
Example

An absent-minded delivery driver has n pizzas to deliver to n different addresses. In how
many ways can they deliver the pizza, one to each address, so that no pizza is delivered
to its correct address?

We will call a pizza that gets delivered to the correct address a fixed point.
Let P be the set of all permutations, and Pj be the set of all permutations where pizza j
gets correctly delivered.

Permutations with no fixed points = |P | − |P1 ∪ P2 ∪ . . . ∪ Pn| = n!−

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣
But what is

∣∣∣∣∣∣
n⋃

j=1

Pj

∣∣∣∣∣∣?

CPMSoc Mathematics Combinatorics 25.03.2021 7 / 20



CPMSOCInclusion-Exclusion
Theorem (Principle of Inclusion-Exclusion for Two Sets)

|A ∪B| = |A|+ |B| − |A ∩B| and |A ∩B| = |A|+ |B| − |A ∪B|.

A

B C

CPMSoc Mathematics Combinatorics 25.03.2021 8 / 20



CPMSOCInclusion-Exclusion
Theorem (Principle of Inclusion-Exclusion)

|A ∪B| = |A|+ |B| − |A ∩B| and |A ∩B| = |A|+ |B| − |A ∪B|.

|X1 ∪X2 ∪ . . . ∪Xn| = |X1 ∪ . . . ∪Xn−1|+ |Xn| − |(X1 ∪X2 ∪ . . . ∪Xn−1) ∩Xn|

=
∑

|Xj | −
∑
i̸=j

|Xi ∩Xj |+
∑

i ̸=j,j ̸=k,i ̸=k

|Xi ∩Xj ∩Xk| − . . .

∣∣∣∣∣
n⋃

k=1

Xk

∣∣∣∣∣ = ∑
S⊆{X1,X2,...Xn}

(−1)|S|−1

∣∣∣∣∣∣
⋂

Xj∈S
Xj

∣∣∣∣∣∣
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CPMSOCDouble Counting
Double-counting is short for counting the same thing in two different ways.

Example

At a maths workshop, each person knew exactly 22 others. For any pair of people X and
Y who knew one another, there was no other person at the workshop whom they both
knew. For any pair of people X and Y , who did not know one another, there were exactly
6 other people whom both of them knew. How many people were at the workshop?

Define a vee to be a triple of people such that exactly two of the three pairs of
aquaitances know each other. We count the number of vees in two different ways.
Suppose there are n people at the workshop.

Each vertex contributes
(
22
2

)
= 231 vees as each vertex as 22 edges emanating from

it.
Hence there are 231n vees.
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Adding the degrees of each vertex gives 22n but we have overcounted the edges by
a factor of 2 so there are 11n edges.

Total number of edges not present is
(
n
2

)
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Every non-edge makes a vee with 6 other edges.
Total number of vees is 6(
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CPMSOCCombinatorial Reciprocal Principle
Theorem (Combinatorial Reciprocal Principle)

Let f be a function defined on a set S.
Let Lj be the set {x ∈ S : f(x) = j}.
Then the following identity holds:∑

k∈S

1

|Lf(k)|
=

∑
j∈f(S)

|Lj |
|Lj |

= |f(S)|
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CPMSOCCombinatorial Reciprocal Principle
Example

A maths olympiad has students from 13 different countries, and from 5 different age
groups.
Show that at least nine students had more students in their age group than students from
their country.

Let S be the set of students, A be the set of age groups and C be the set of countries.
Then let a : S → A and c : S → C be functions returning a given student’s age group and
country respectively. Let Aj = {s ∈ S : a(s) = j} and Cj = {s ∈ S : c(s) = j}.
By the combinatorial reciprocal principle,∑

x∈S

(
1

Cc(s)
− 1

Aa(s)

)
=

∑
x∈S

1

Cc(s)
−

∑
x∈S

1

Aa(s)

= 13− 5 = 8
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Since Aa(s), Cc(s) are positive integers, we have 1
Cc(s)

− 1
Aa(s)

< 1.

We therefore require more than 8 students for which 1
Cc(s)

− 1
Aa(s)

> 0
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CPMSOCRecurrence Relations
Example

How many strings of four left and four right parentheses are balanced?
For example: ()()()(), (()())(), (()(())) are balanced, while ())()(() is not.

Let Cn denote the number of balanced strings of n left and n right parentheses. We call a
balanced string of parentheses with n pairs a n-bracketing. Observe that every
n-bracketing can be uniquely written in the form

(wj)wk,

where wj is a j-bracketing, wk is a k-bracketing and j + k + 1 = n. This gives us the
recurrence relation

Cn+1 =
n∑

k=0

CkCn−k.
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CPMSOCRecurrence Relations
Example

How many strings of four left and four right parentheses are balanced?
For example: ()()()(), (()())(), (()(())) are balanced, while ())()(() is not.

This gives us the recurrence relation

Cn+1 =

n∑
k=0

CkCn−k.

From here, we can see that

C4 = C0C3 + C1C2 + C1C2 + C0C3

C3 = C0C2 + C1C1 + C2C0

C2 = C0C1 + C1C0

Observe also that C1 = C0 = 1. Hence C2 = 2,

C3 = 5, C4 = 14.
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CPMSOCGenerating Functions
The generating function of a sequence S = S1, S2, . . . is defined as

GS(x) =

∞∑
n=0

Snx
n.

Example

Find a general formula for Cn.

Cn+1 =

n∑
k=0

CkCn−k

GC(x)
2 =

(C0 + C1x+ C2x
2 + . . .)2
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Example

Find a general formula for Cn.

Cn+1 =

n∑
k=0

CkCn−k

GC(x)
2 = (C0 + C1x+ C2x

2 + . . .)2

Consider the xn term of this new function. The coefficient is

C0Cn + C1Cn−1 + . . .+ CnC0 = Cn+1.

Therefore,

GC(x)− xGC(x)
2 =

C0 +C1x +C2x
2 +C3x

3 + . . .
−C1x −C2x

2 −C3x
3 − . . .

= C1 = 1.
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CPMSOCGenerating Functions
Example

Find a general formula for Cn.

GC(x)− xGC(x)
2 = 1

=⇒ GC(x) =
1±

√
1− 4x

2x

Choose the − sign so that the function has a power series expansion at zero. A Taylor
series expansion tells us that

√
1 + y =

∞∑
n=0

(−1)n+1

4n(2n− 1)

(
2n

n

)
yn and with further computation, GC(x) =

∞∑
x=1

(
2n

n

)
xn

n+ 1
.
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