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CPMSOCInvariants
An invariant χ is some characteristic of a configuration G that does not change under
a particular kind of transformation T , i.e. χ(G) = χ(T (G))

We say that χ is invariant under T , or with respect to T
If two objects have different invariants, neither can be reached by applying T to the
other any number of times
If two objects have the same invariant, there is no guarantee that we can apply T to
transform one into the other (nor that we cannot)
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CPMSOCInvariants
Example

Show that for any connected planar graph with V ≥ 1 vertices, E edges and F distinct
regions, the equation V − E + F = 2 holds.
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CPMSOCInvariants
Example

Show that for any connected planar graph with V ≥ 1 vertices, E edges and F distinct
regions, the equation V − E + F = 2 holds.

1 Copy one vertex, v1, from the given graph, G, into a new plane, P

2 Because the original graph is connected, there was a path from this vertex to any
other

3 For each vertex in G that connected to v1, create new nodes vi in P and connect
them to v1 (keeping the new graph planar)

Each new node increases V by 1, decreases E by 1, and leaves F unchanged, so
V − E + F is unchanged
Repeat this for all the nodes just created, and continue until we have all the nodes from
the original graph
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CPMSOCInvariants
Example

Show that for any connected planar graph with V ≥ 1 vertices, E edges and F distinct
regions, the equation V − E + F = 2 holds.

4 Draw in all the edges not yet copied into P

Introducing an edge while keeping the graph planar increases E by 1 and decreases F
by 1, so V − E + F is unchanged

5 We now have a copy of the original graph, and since V − E + F was invariant
throughout, it must be the same as it was to begin with, i.e. 1− 0 + 1 = 2
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CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5


2 Clearly, the area of the rectangle must be divisible by 12.
3 Experimenting with smaller m× n configurations where neither m nor n is a multiple

of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5



2 Clearly, the area of the rectangle must be divisible by 12.
3 Experimenting with smaller m× n configurations where neither m nor n is a multiple

of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5


2 Clearly, the area of the rectangle must be divisible by 12.

3 Experimenting with smaller m× n configurations where neither m nor n is a multiple
of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5


2 Clearly, the area of the rectangle must be divisible by 12.
3 Experimenting with smaller m× n configurations where neither m nor n is a multiple

of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5


2 Clearly, the area of the rectangle must be divisible by 12.
3 Experimenting with smaller m× n configurations where neither m nor n is a multiple

of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 12× 1 rectangles (allowing 90◦ rotations)?

1 Suppose that there is such a tiling. Number the unit squares in the large rectangle as
follows. 

1 12 11 · · · 1 12

2 1 12 · · · 2 1
...

...
...

. . .
...

...
5 4 3 · · · 5 4

6 5 4 · · · 6 5


2 Clearly, the area of the rectangle must be divisible by 12.
3 Experimenting with smaller m× n configurations where neither m nor n is a multiple

of 12 yet mn is, leads us to conjecture that the 66× 62 rectangle cannot be tiled with
12× 1 rectangles

4 The colouring has the nice property that any 12× 1 rectangle in the tiling consists of
12 differently coloured squares. If the large rectangle can be tiled then it will be tiled
with 66 · 62/12 = 341 tiles.

5 Hence, the large rectangle must contain 341 squares in each of the 12 colours.

CPMSoc Mathematics Invariants and Semi-Invariants 8.04.2021 6 / 18



CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 121 rectangles (allowing 90◦ rotations)?

6 Call a colouration of a rectangle "homogenous" if each colour occurs in the same
number of squares.

7 We can break up the large rectangle into four sub-rectangles.[
60× 60 60× 2

6× 60 6× 2

]
8 It is easy to check that the 60× 60, 60× 2 and 6× 60 sub-rectangles are all

homogeneous, since each sub-rectangle has a dimension that is a multiple of 12.
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CPMSOCInvariants
Example

Is it possible to tile a 66× 62 rectangle with 121 rectangles (allowing 90◦ rotations)?

9 But the 6× 2 sub-rectangle is coloured as follows:

1 12

2 1

3 2

4 3

5 4

6 5



10 Thus, the larger rectangle is not homogeneous, so the tiling is impossible.
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CPMSOCInvariants
Example

A room begins empty. Each minute, either one person enters or two people leave. After
exactly 31999 minutes, could the room contain 31000 + 2 people?

1 If there are n people in the room, after one minute, there will be either n+ 1 or n− 2
people. The difference between these two possible outcomes is 3.

2 At any time t, any two possible n-values differ by a multiple of 3.
3 31999 is a possible n-value after 31999 minutes
4 31999 ≡ 0 (mod 3) while 31000 + 2 ≡ 2 (mod 3)

5 The room cannot contain 31000 + 2 people after exactly 31999 minutes
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CPMSOCInvariants
Example

A bubble chamber contains three types of subatomic particles: 10 particles of type X, 11
of type Y and 111 of type Z. Whenever an X- and Y -particle collide, they both become
Z-particles. Likewise, Y - and Z-particles collide and become X-particles and X- and
Z-particles become Y -particles upon collision. Can the particles in the bubble chamber
evolve so that only one type is present?

We will indicate the population at any time by (x, y, z) and transformations by
→X+Y ,→Y+Z ,→X+Z .
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→X+Y ,→Y+Z ,→X+Z .

1 (10, 11, 111) →X+Y (9, 10, 113) →X+Y (8, 9, 115) →X+Z (7, 11, 114).

2 Note that Z − Y goes from 100 to 103, 106 and then 103

3 Y −X is 1, 1, and 1 again, but then is 4

4 Hypothesis: Z − Y, Y −X,Z −X are invariant (mod 3)
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Z-particles become Y -particles upon collision. Can the particles in the bubble chamber
evolve so that only one type is present?

We will indicate the population at any time by (x, y, z) and transformations by
→X+Y ,→Y+Z ,→X+Z .

6 Note that (x, y, z) →X+Y (x− 1, y − 1, z + 2) and so Z −X and Z − Y increase by 3
and Y −X stays the same (similarly for →X+Z and →Y+Z)

7 For (10, 11, 111), Y −X = 1 ̸≡ 0 mod 3, so the X,Y populations can never be the
same
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8 Hence Z cannot contain the whole population; by a similar argument, neither can Y
nor X

9 Therefore, the particles cannot all be of the same type, regardless of the collisions
that occur
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CPMSOCInvariants
Example

(IMO 1985)
Consider a set of 1985 positive integers, not necessarily distinct, and none with prime
factors bigger than 23. Prove that there must exist four integers in this set whose product
is equal to the fourth power of an integer.

1 Each such number can be written as k = 2f1 · 3f2 · 5f3 · 7f4 · 11f5 · 13f6 · 17f7 · 19f8 · 23f9
where the exponents f1, . . . , f9 are nonnegative integers

2 If gn =

{
1 if fn ≡ 1 (mod 2)

0 if fn ≡ 0 (mod 2)
, then k1 · k2 is a perfect square when the gis match
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CPMSOCInvariants
Example

(IMO 1985)
Consider a set of 1985 positive integers, not necessarily distinct, and none with prime
factors bigger than 23. Prove that there must exist four integers in this set whose product
is equal to the fourth power of an integer.

3 There are 29 = 512 possible 9-tuples of the parities of (f1, f2, . . . f9). By repeated use
of the pigeonhole principle, we conclude that 1472 of the integers in the set can be
arranged into the 736 pairs

(a1, b1), (a2, b2), . . . (a736, b736)

such that each pair contains two numbers with identical 9-tuples of exponent parity.

4 Thus the product of the numbers in each pair is a perfect square.
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CPMSOCInvariants
Example

(IMO 1985)
Consider a set of 1985 positive integers, not necessarily distinct, and none with prime
factors bigger than 23. Prove that there must exist four integers in this set whose product
is equal to the fourth power of an integer.

5 If we let ci = aibi then each of
√
c1,

√
c2, . . . ,

√
c736

is an integer with prime factors at most 23.

6 Using the pigeonhole principle again, we conclude that at least two numbers in the
above list share the same 9-tuple of exponent parity.

7 So
√
ck
√
cj = n2 for some integer n.

8 Thus n4 = ckcj = ajbjakbk so we have found four numbers whose product is a fourth
power.
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CPMSOCInvariants
Example

Four congruent right triangles are given. One can cut one of them along the altitude and
repeat the operation several times with the newly obtained triangles. Prove that no matter
how we perform the cuts, we can always find among the triangles two that are congruent.

1 Without loss of generality, we may assume that the length of the hypotenuse is 1 and
the legs are of length p and q.

2 In the process of cutting, the new triangles will be in the ratio pmqn to the original
ones, for some negative integers n and m. Let’s call the pair (m,n).

3 Each time we cut a triangle, we replace the pair (m,n) with the pairs (m+ 1, n) and
(m,n+ 1).

4 Assign the weight 1
2m+n to the pair (m,n). Then the sum I of all weights is invariant

under cuts.
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2 In the process of cutting, the new triangles will be in the ratio pmqn to the original
ones, for some negative integers n and m. Let’s call the pair (m,n).

3 Each time we cut a triangle, we replace the pair (m,n) with the pairs (m+ 1, n) and
(m,n+ 1).

4 Assign the weight 1
2m+n to the pair (m,n). Then the sum I of all weights is invariant

under cuts.

5 The initial value of I is 4. If at some stage the triangles were pairwise incongruent,
then the value of I would be strictly less than

∞∑
m,n=0

1

2m+n
=

∞∑
m=0

1

2m

∞∑
n=0

1

2n
= 4,

which is a contradiction. Hence any resulting configuration must contain two
congruent triangles.
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CPMSOCInvariants
Example

There are n markers, each with one side white and the other side black, aligned in a row
with their white sides up. At each step, if possible, we choose a marker with the white side
up (but not one of the outermost markers), remove it, and reverse the two neighbouring
markers. Prove that one can reach a configuration with only two markers left if and only
if n− 1 is not divisible by 3.

1 We refer to a marker by the colour of its visible face.
2 Note that the parity of the number of black markers must remain unchanged during

the game.
3 Hence, if only two markers are left then they must be the same colour.
4 We define an invariant as follows. To a white marker with t black markers to its left we

assign the number (−1)t.
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CPMSOCInvariants
Example

There are n markers, each with one side white and the other side black, aligned in a row
with their white sides up. At each step, if possible, we choose a marker with the white side
up (but not one of the outermost markers), remove it, and reverse the two neighbouring
markers. Prove that one can reach a configuration with only two markers left if and only
if n− 1 is not divisible by 3.

5 The invariant S is the residue class modulo 3 of the sum of all the numbers assigned
to the white markers.

6 We can check that S is invariant under the operation defined in the statement. For
instance, if a white marker with t black markers on the left and whose neighbours are
both black is removed, then S increases by −(−1)t + (−1)t−1 + (−1)t−1 = 3(−1)t−1,
which is zero modulo 3. The other three cases are analogous.
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Example

There are n markers, each with one side white and the other side black, aligned in a row
with their white sides up. At each step, if possible, we choose a marker with the white side
up (but not one of the outermost markers), remove it, and reverse the two neighbouring
markers. Prove that one can reach a configuration with only two markers left if and only
if n− 1 is not divisible by 3.

7 If the game ends with two black markers then S is zero,; if it ends with two white
markers then S is 2. This proves that n− 1 is not divisible by 3, as S is initially
congruent to n modulo 3.

8 Conversely, if we start with n ≥ 5 white markers, then n is congruent to 0 or 2 modulo
3. Then by removing in three consecutive moves the leftmost allowed white markers,
we obtain a row of n− 3 white markers. Working backwards, we can reach either 2 or
3 white markers. In the latter case, one more move gives 2 black markers as desired.
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CPMSOCSemi-invariants
A semi-invariant (or monovariant) ψ is some characteristic of a configuration G that
only increases (or decreases) under a particular kind of transformation T , i.e.
ψ(G) > ψ(T (G)) or ψ(G) ≥ ψ(T (G))

It may be stricly or non-strictly increasing
If ψ(A) ≥ ψ(B), then B cannot be written in the form T (T (. . . T (A)))
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