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1 Problem Set 2 Solutions

1. Prove or disprove: For all pairs of positive integers (a, b), there exists some
positive integer n such that an is a perfect cube, while bn is a perfect fifth
power.

Solution

Let n = a5b9. Then, an = a6b9 = (a2b3)3 and bn = a5b10 = (ab2)5. There-
fore, an is a perfect cube and bn is a perfect fifth power, so such a positive
integer n always exists.

2. Determine all positive integers relatively prime to the terms of the infinite
sequence an = 2n + 3n + 6n − 1, where n ≥ 1.

Solution

We claim that p|ap−2 for all primes p > 3. Indeed, since 2, 3 and 5 are
coprime to p, then by Fermat’s Little theorem we have
2p−1 ≡ 3p−1 ≡ 6p−1 ≡ 1 (mod p). This then gives us

2p−2 + 3p−2 + 6p−2 − 1 ≡ 1

2
+

1

3
+

1

6
− 1 ≡ 0 (mod p).

Consider any integer x > 1 We know that x has some prime divisor q. If
q = 2 or q = 3, we get that x is not relatively prime to a2 = 48. If q > 3,
then since q|aq−2, then x will not be relatively prime to aq−2. Hence, only
1 is relatively prime to all terms in the sequence.
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3. A deck of n > 1 cards is given. A positive integer is written on each card.
The deck has the property that the arithmetic mean of the numbers on
each pair of cards is also the geometric mean of the numbers on some
collection of one or more cards. For what n does it follow that the numbers
on all the cards are equal?

Solution

Suppose that a1 . . . an satisfy the required properties but are not all equal.
If d = gcd(a1, a2 . . . an) > 1 then replace a1, a2 . . . an by a1

d , a2

d . . . an

d .
Hence without loss of generality we may assume

gcd(a1, a2 . . . an) = 1.

Also WLOG we may assume

a1 ≥ a2 ≥ . . . ≥ an.

As a1 ≥ 2, let p be a prime divisor of a1. Let k be the smallest index such
that p - ak (which must exist). In particular note that a1 > ak.
Consider the mean x = a1+ak

2 . By assumption, it equals some geometric
mean, hence

m
√
ai1ai2 . . . aim =

a1 + ak
2

> ak.

Since the arithmetic mean is an integer not divisible by p, all the indices
i1, i2 . . . im must be at least k. But then the geometric mean is at most ak,
contradiction.

4. An integer sequence is defined by an = 2an−1 + an−2, (n > 1), a0 = 0,
a1 = 1. Prove that 2k divides an if and only if 2k divides n.

Solution

If we analyse the terms of the sequence modulo 4, it is easy to verify by
induction that a2n is even and a2n+1 ≡ 1 ( mod 4). for all n ≥ 0 (the terms
of the sequence modulo 4 are 0, 1, 2, 1, 0, 1, 2, 1 . . .). We can also check by
strong induction on t that an+t = at+1an + atan−1 for t ≥ 0. It is easy to
check that the base cases t = 0, t = 1 are true.

If the identity is true for for all t ≤ k (k ≥ 1) then for t = k + 1 we have

an+k+1 = 2an+k + an+k−1

= 2(ak+1an + akan−1) + (akan + ak−1an−1)

= (2ak+1 + ak)an + (2ak + ak−1)an−1

= ak+2an + ak+1an−1.
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Thus, the identity is proven by strong induction. Using the identity, we
have in particular that

a2n = an(an+1 + an−1).

From the modulo 4 analysis, note that 2k|an iff 2k|n for k = 0, 1, 2.
Assume (for means of strong induction) that 2k|an iff 2k|n for all n for
k = 0, 1, 2 . . .m for some m ≥ 2. Then suppose that 2m+1|n. Let p = n

2 .
We have

a2p = ap(ap+1 + ap−1).

Since 2m|ap (as 2m|p) and since ap+1 + ap−1 is even (as p + 1 and p − 1
are odd so ap+1 and ap−1 are odd), then an is divisible by 2m+1.

Now suppose that an is divisible by 2m+1. Then an is divisible by 2m so n
is divisible by 2m. Let p = n

2 . We again have

a2p = ap(ap+1 + ap−1).

Assume for the sake of contradiction that n is not divisible by 2m+1. Then
p is divisible by 2m−1 but not 2m, so ap is divisible by 2m−1 but not by
2m. Also p + 1 and p− 1 are odd, so ap+1 + ap−1 is congruent to
2 modulo 4, so a2p is divisible by 2m but not by 2m+1, contradiction.
Therefore, n must be divisible by 2m+1. This completes the inductive step,
so the proof is complete.

5. Find all pairs of integers (a, b) for which there exist functions f : Z→ Z
and g : Z → Z satisfying f(g(x)) = x + a and g(f(x)) = x + b for all
integers x.

Solution

The answer is if a = b or a = −b. In the former case, we can take
f(x) ≡ x + a and g(x) ≡ x. In the latter case, we can take f(x) ≡ −x + a
and g(x) ≡ −x.

Now we prove that these are the only possibilities. We first see that the
functions f and g are bijections. Surjectivity is immediate from definition
of f and g. To prove injectivity, notice that if f(u) = f(v) then

g(f(u)) = g(f(v)) =⇒ u + b = v + b =⇒ u = v, and similarly for g.

Note that for any x, we have

f(x + b) = f(g(f(x)) = f(x) + a.

g(x + a) = g(f(g(x)) = g(x) + b.

3



If either a or b is zero, we immediately get the other is zero and hence
done. So assume ab 6= 0.

If |b| > |a| then two of

{f(0), f(1), . . . f(b− 1)} (mod a)

coincide, which together with repeatedly applying the first equation above
will then give a contradiction to injectivity of f . A similar contradiction is
reached if |a| > |b| by symmetry. This completes the proof.

6. Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely
many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

Solution.

The condition is equivalent to an+a2−1 dividing am+a−1 as polynomials.

Claim: We must have m ≤ 2n.

Proof. Assume the contrary m > 2n and let 0 < r < 1 be the unique real
number with rn + r2 = 1, hence rm + r = 1. But now

0 = rm + r − 1 < r(rn)2 + r − 1 = r
(
(1− r2)2 + 1

)
− 1

= −(1− r)
(
r4 + r3 − r2 − r + 1

)
.

As 1− r > 0 and r4 + r3 − r2 − r + 1 > 0, this is a contradiction.

Clearly m > n.

an + a2 − 1 | am + a− 1

⇐⇒ an + a2 − 1 | (am + a− 1)(a + 1) = am(a + 1) + (a2 − 1)

⇐⇒ an + a2 − 1 | am(a + 1)− an

⇐⇒ an + a2 − 1 | am−n(a + 1)− 1.

The right-hand side has degree m−n+1 ≤ n+1, and the leading coefficients
are both +1. So the only possible situations are

am−n(a + 1)− 1 = (a + 1)
(
an + a2 − 1

)
am−n(a + 1) + 1 = an + a2 − 1.

The former fails by just taking a = −1; the latter implies (m,n) = (5, 3).
As our work was reversible, this also implies (m,n) = (5, 3) works, so the
proof is complete.
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