

Competitive Programming and Mathematics Society

Number Theory Workshop 2, Week 6, Term 1, 2021

CPMSoc Mathematics

Table of contents

1 What is Number Theory?

2 Modular Arithmetic

3 Divisibility

4 Primality and Coprimality

■ In algebra, we usually deal with continuous quantities, like real or complex numbers.

- In algebra, we usually deal with continuous quantities, like real or complex numbers.
- In number theory, we restrict ourselves to discrete quantities, like integers or natural numbers.

- In algebra, we usually deal with continuous quantities, like real or complex numbers.
- In number theory, we restrict ourselves to discrete quantities, like integers or natural numbers.
- This generally makes the questions harder.

- In algebra, we usually deal with continuous quantities, like real or complex numbers.
- In number theory, we restrict ourselves to discrete quantities, like integers or natural numbers.
- This generally makes the questions harder.

Theorem (Fermat's Last Theorem, 1637-1995)

 $a^n + b^n = c^n$ has no integer solutions for n > 2.

- In algebra, we usually deal with continuous quantities, like real or complex numbers.
- In number theory, we restrict ourselves to discrete quantities, like integers or natural numbers.
- This generally makes the questions harder.

Theorem (Fermat's Last Theorem, 1637-1995)

 $a^n + b^n = c^n$ has no integer solutions for n > 2.

• Key topics in number theory include divisibility, primality, and partitioning.

- In algebra, we usually deal with continuous quantities, like real or complex numbers.
- In number theory, we restrict ourselves to discrete quantities, like integers or natural numbers.
- This generally makes the questions harder.

Theorem (Fermat's Last Theorem, 1637-1995)

 $a^n + b^n = c^n$ has no integer solutions for n > 2.

- Key topics in number theory include divisibility, primality, and partitioning.
- Key techniques include modular arithmetic and algebraic manipulations.

• We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:

We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions: a - b = kn for some integer k.

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - 3 a and b have the same remainder when divided by n.

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - 3 a and b have the same remainder when divided by n.

 $\bullet 4 \equiv 13 \equiv -5 \pmod{9}$

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - $\mathbf{3}$ a and b have the same remainder when divided by n.
 - $\bullet \ 4 \equiv 13 \equiv -5 \pmod{9}$
 - $\bullet \ 0 \equiv 3 \pmod{3}, 1 \equiv 4 \pmod{3}, 2 \equiv 5 \pmod{3}, 3 \equiv 6 \pmod{3}, \ldots$

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - $\mathbf{3}$ a and b have the same remainder when divided by n.
 - $\bullet 4 \equiv 13 \equiv -5 \pmod{9}$
 - $\bullet \ 0 \equiv 3 \pmod{3}, 1 \equiv 4 \pmod{3}, 2 \equiv 5 \pmod{3}, 3 \equiv 6 \pmod{3}, \ldots$
- Modular equivalence, written as =, is similar to = in a number of ways, so we say it is an equivalence relation.

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - 3 a and b have the same remainder when divided by n.

$$4 \equiv 13 \equiv -5 \pmod{9}$$

- $\bullet 0 \equiv 3 \pmod{3}, 1 \equiv 4 \pmod{3}, 2 \equiv 5 \pmod{3}, 3 \equiv 6 \pmod{3}, \dots$
- Modular equivalence, written as =, is similar to = in a number of ways, so we say it is an equivalence relation.

It is transitive:

```
3 \equiv 7 \pmod{4} and 7 \equiv 15 \pmod{4} implies 3 \equiv 15 \pmod{4}, just as a = b, b = c \implies a = c.
```


- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - 3 a and b have the same remainder when divided by n.

$$4 \equiv 13 \equiv -5 \pmod{9}$$

- $\bullet 0 \equiv 3 \pmod{3}, 1 \equiv 4 \pmod{3}, 2 \equiv 5 \pmod{3}, 3 \equiv 6 \pmod{3}, \dots$
- Modular equivalence, written as =, is similar to = in a number of ways, so we say it is an equivalence relation.
- It is transitive:

$$3 \equiv 7 \pmod{4}$$
 and $7 \equiv 15 \pmod{4}$ implies $3 \equiv 15 \pmod{4}$, just as $a = b, b = c \implies a = c$.

- It is reflexive:
 - $a \equiv a \pmod{n}$, just as a = a.

- We say that $a \equiv b \pmod{n}$ when it matches any of these equivalent definitions:
 - 1 a-b=kn for some integer k.
 - 2 a = kn + b for some integer k.
 - 3 a and b have the same remainder when divided by n.

$$4 \equiv 13 \equiv -5 \pmod{9}$$

- $\bullet 0 \equiv 3 \pmod{3}, 1 \equiv 4 \pmod{3}, 2 \equiv 5 \pmod{3}, 3 \equiv 6 \pmod{3}, \dots$
- Modular equivalence, written as =, is similar to = in a number of ways, so we say it is an equivalence relation.
- It is transitive:

$$3 \equiv 7 \pmod{4}$$
 and $7 \equiv 15 \pmod{4}$ implies $3 \equiv 15 \pmod{4}$, just as $a = b, b = c \implies a = c$.

- It is reflexive:
 - $a \equiv a \pmod{n}$, just as a = a.
- It is symmetric:

 $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$, just as $a = b \implies b = a$.

Modular equivalence has some other fun properties.

 $\blacksquare \ n \equiv 0 \pmod{n}$

CPMSOC

Modular equivalence has some other fun properties.

 $\blacksquare \ n \equiv 0 \pmod{n}$

```
If a \equiv b \pmod{n}, then ka \equiv kb \pmod{kn}.
```

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.
- If p is prime, then for every $a (p \not| a)$ there exists b such that $ab \equiv 1 \pmod{p}$.

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.
- If p is prime, then for every $a (p \not| a)$ there exists b such that $ab \equiv 1 \pmod{p}$.
- If p is prime, then $a^p \equiv a \pmod{p}$ (Fermat's little theorem).

- $\blacksquare \ n \equiv 0 \pmod{n}$
- If $a \equiv b \pmod{n}$, then $ka \equiv kb \pmod{kn}$.
- If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.
- If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.
- If p is prime, then for every $a (p \not| a)$ there exists b such that $ab \equiv 1 \pmod{p}$.
- If p is prime, then $a^p \equiv a \pmod{p}$ (Fermat's little theorem).
- p is prime iff $(p-1)! \equiv -1 \pmod{p}$ (Wilson's theorem).

Example

Example

Can you find a set of 2000 distinct positive integers such that the sum of the members of every subset is not a perfect square?

1 Consider the set of integers given by $n_i = 3 \cdot 4^i$ for i = 1, 2, ..., 2000.

Example

Can you find a set of 2000 distinct positive integers such that the sum of the members of every subset is not a perfect square?

1 Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.

2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.

- 1 Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.
- 2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.
- **3** If this were a perfect square, then we could write $4^k (3 + 4^{k'}x) = n^2$ for some $n \in \mathbb{Z}$.

- **1** Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.
- 2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.
- 3 If this were a perfect square, then we could write $4^k (3 + 4^{k'}x) = n^2$ for some $n \in \mathbb{Z}$.
- 4 However, we then have some integer $u = 2^{-k}n$ where $u^2 = 3 + 4^{k'}x \equiv 3 \pmod{4}$.

- **1** Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.
- 2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.
- 3 If this were a perfect square, then we could write $4^k (3 + 4^{k'}x) = n^2$ for some $n \in \mathbb{Z}$.
- 4 However, we then have some integer $u = 2^{-k}n$ where $u^2 = 3 + 4^{k'}x \equiv 3 \pmod{4}$.
- 5 For any perfect square, we have $n^2 \equiv 0^2, 1^2, 2^2$, or $3^2 \equiv 0$ or $1 \pmod{4}$.

- **1** Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.
- 2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.
- 3 If this were a perfect square, then we could write $4^k (3 + 4^{k'}x) = n^2$ for some $n \in \mathbb{Z}$.
- 4 However, we then have some integer $u = 2^{-k}n$ where $u^2 = 3 + 4^{k'}x \equiv 3 \pmod{4}$.
- 5 For any perfect square, we have $n^2 \equiv 0^2, 1^2, 2^2$, or $3^2 \equiv 0$ or $1 \pmod{4}$.
- 6 Since all perfect squares have remainder 0 or 1, we have a contradiction.

- **1** Consider the set of integers given by $n_i = 3 \cdot 4^i$ for $i = 1, 2, \dots, 2000$.
- 2 Now any sum of these integers can be written as $4^k (3 + 4^{k'}x)$ for some $k, k', x \in \mathbb{N}$.
- 3 If this were a perfect square, then we could write $4^k (3 + 4^{k'}x) = n^2$ for some $n \in \mathbb{Z}$.
- 4 However, we then have some integer $u = 2^{-k}n$ where $u^2 = 3 + 4^{k'}x \equiv 3 \pmod{4}$.
- 5 For any perfect square, we have $n^2 \equiv 0^2, 1^2, 2^2$, or $3^2 \equiv 0$ or $1 \pmod{4}$.
- 6 Since all perfect squares have remainder 0 or 1, we have a contradiction.
- 7 Thus, every subset sum is not a perfect square.

Divisibility

• We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.

Divisibility

- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.

```
2 \mid 4 \mid 12 and 2 \mid 6 \mid 12 but 4 \not 6.
```


- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.
 - $2 \mid 4 \mid 12 \text{ and } 2 \mid 6 \mid 12 \text{ but } 4 \not | 6.$
- Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order relation.

- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.
 - $2 \mid 4 \mid 12 \text{ and } 2 \mid 6 \mid 12 \text{ but } 4 \not | 6.$
- Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order relation.
- It is transitive:
 - $2 \mid 4 \text{ and } 4 \mid 8 \text{ implies } 2 \mid 8$, just as $\pi \geq 3$ and $3 \geq e$ implies $\pi \geq e$.

- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.
 - $2 \mid 4 \mid 12 \text{ and } 2 \mid 6 \mid 12 \text{ but } 4 \not | 6.$
- Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order relation.
- It is transitive:
 - $2 \mid 4 \text{ and } 4 \mid 8 \text{ implies } 2 \mid 8$, just as $\pi \geq 3$ and $3 \geq e$ implies $\pi \geq e$.

```
It is reflexive:
```

7|7, just as $\pi \ge \pi$.

- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.
 - $2 \mid 4 \mid 12 \text{ and } 2 \mid 6 \mid 12 \text{ but } 4 \not | 6.$
- Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order relation.
- It is transitive:

 $2 \mid 4 \text{ and } 4 \mid 8 \text{ implies } 2 \mid 8$, just as $\pi \geq 3$ and $3 \geq e$ implies $\pi \geq e$.

It is reflexive:

7|7, just as $\pi \ge \pi$.

It is antisymmetric:

```
4 | 8 implies 8 /4, just as x \ge y implies y \not\ge x unless y = x.
If a \mid b, then b \not|a unless b = a.
```


- We say $a \mid b$ ("a divides b") when b = ka = ka + 0 for some integer k.
- Alternatively, when $a \equiv 0 \pmod{b}$.
 - $2 \mid 4 \mid 12 \text{ and } 2 \mid 6 \mid 12 \text{ but } 4 \not | 6.$
- Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order relation.
- It is transitive:
 - $2 \mid 4 \text{ and } 4 \mid 8 \text{ implies } 2 \mid 8$, just as $\pi \geq 3$ and $3 \geq e \text{ implies } \pi \geq e$.
- It is reflexive:
 - 7|7, just as $\pi \ge \pi$.
- It is antisymmetric:
 - $4 \mid 8 \text{ implies } 8 \not|\!\!/4, \text{ just as } x \geq y \text{ implies } y \not\geq x \text{ unless } y = x.$
 - If $a \mid b$, then $b \not| a$ unless b = a.
- Divisibility is not a total order, since $4 \not| 7$ and $7 \not| 4$, while at least one of $x \ge y$ or $y \ge x$ must always be true.

CPMSOC

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

CPMSOC

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

1 If 4|n, then n = 4k. Note that $1^4 \equiv 1 \pmod{5}$, $2^4 = 16 \equiv 1 \pmod{5}$, $3^4 = 81 \equiv 1 \pmod{5}$, $4^4 = 256 \equiv 1 \pmod{5}$.

CPMSOC

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

If 4|n, then n = 4k. Note that 1⁴ ≡ 1 (mod 5), 2⁴ = 16 ≡ 1 (mod 5), 3⁴ = 81 ≡ 1 (mod 5), 4⁴ = 256 ≡ 1 (mod 5).
 So 1ⁿ + 2ⁿ + 3ⁿ + 4ⁿ = 1^{4k} + 2^{4k} + 3^{4k} + 4^{4k} ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

 If 4|n, then n = 4k. Note that 1⁴ ≡ 1 (mod 5), 2⁴ = 16 ≡ 1 (mod 5), 3⁴ = 81 ≡ 1 (mod 5), 4⁴ = 256 ≡ 1 (mod 5).
 So 1ⁿ + 2ⁿ + 3ⁿ + 4ⁿ = 1^{4k} + 2^{4k} + 3^{4k} + 4^{4k} ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)
 Otherwise when n ≡ 1 (mod 4): 1^{4k+1} + 2^{4k+1} + 3^{4k+1} + 4^{4k+1} ≡ 1 + 2 + 3 + 4 ≡ 10 ≡ 0 (mod 5)

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

 If 4|n, then n = 4k. Note that 1⁴ ≡ 1 (mod 5), 2⁴ = 16 ≡ 1 (mod 5), 3⁴ = 81 ≡ 1 (mod 5), 4⁴ = 256 ≡ 1 (mod 5).
 So 1ⁿ + 2ⁿ + 3ⁿ + 4ⁿ = 1^{4k} + 2^{4k} + 3^{4k} + 4^{4k} ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)
 Otherwise when n ≡ 1 (mod 4): 1^{4k+1} + 2^{4k+1} + 3^{4k+1} + 4^{4k+1} ≡ 1 + 2 + 3 + 4 ≡ 10 ≡ 0 (mod 5)
 When n ≡ 2 (mod 4): 1^{4k+2} + 2^{4k+2} + 3^{4k+2} + 4^{4k+2} ≡ 1 + 4 + 9 + 16 ≡ 30 ≡ 0 (mod 5)

CPMSOC

Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

 If 4|n, then n = 4k. Note that 1⁴ ≡ 1 (mod 5), 2⁴ = 16 ≡ 1 (mod 5), 3⁴ = 81 ≡ 1 (mod 5), 4⁴ = 256 ≡ 1 (mod 5).
 So 1ⁿ + 2ⁿ + 3ⁿ + 4ⁿ = 1^{4k} + 2^{4k} + 3^{4k} + 4^{4k} ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)
 Otherwise when n ≡ 1 (mod 4): 1^{4k+1} + 2^{4k+1} + 3^{4k+1} + 4^{4k+1} ≡ 1 + 2 + 3 + 4 ≡ 10 ≡ 0 (mod 5)
 When n ≡ 2 (mod 4): 1^{4k+2} + 2^{4k+2} + 3^{4k+2} + 4^{4k+2} ≡ 1 + 4 + 9 + 16 ≡ 30 ≡ 0 (mod 5)
 When n ≡ 3 (mod 4): 1^{4k+3} + 2^{4k+3} + 3^{4k+3} + 4^{4k+3} ≡ 1 + 8 + 27 + 64 ≡ 100 ≡ 0 (mod 5)

CPMSOC

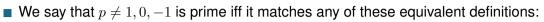
Example

Show that for any non-negative integer n, $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.

- If 4|n, then n = 4k. Note that 1⁴ ≡ 1 (mod 5), 2⁴ = 16 ≡ 1 (mod 5), 3⁴ = 81 ≡ 1 (mod 5), 4⁴ = 256 ≡ 1 (mod 5).
 So 1ⁿ + 2ⁿ + 3ⁿ + 4ⁿ = 1^{4k} + 2^{4k} + 3^{4k} + 4^{4k} ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)
 Otherwise when n ≡ 1 (mod 4): 1^{4k+1} + 2^{4k+1} + 3^{4k+1} + 4^{4k+1} ≡ 1 + 2 + 3 + 4 ≡ 10 ≡ 0 (mod 5)
 When n ≡ 2 (mod 4): 1^{4k+2} + 2^{4k+2} + 3^{4k+2} + 4^{4k+2} ≡ 1 + 4 + 9 + 16 ≡ 30 ≡ 0 (mod 5)
 When n ≡ 3 (mod 4): 1^{4k+3} + 2^{4k+3} + 3^{4k+3} + 4^{4k+3} ≡ 1 + 8 + 27 + 64 ≡ 100 ≡ 0 (mod 5)
- 6 Therefore, true! (by cases)

We say that p ≠ 1,0,-1 is prime iff it matches any of these equivalent definitions: 1 Whenever p | ab, p | a or p | b.

- We say that $p \neq 1, 0, -1$ is prime iff it matches any of these equivalent definitions:
 - 1 Whenever $p \mid ab, p \mid a \text{ or } p \mid b$.
 - 2 Whenever p = ab, $a = \pm 1$ or $b = \pm 1$.



1 Whenever $p \mid ab, p \mid a \text{ or } p \mid b$.

2 Whenever
$$p = ab$$
, $a = \pm 1$ or $b = \pm 1$.

Theorem

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

• We say that $p \neq 1, 0, -1$ is prime iff it matches any of these equivalent definitions:

- 1 Whenever $p \mid ab$, $p \mid a$ or $p \mid b$.
- 2 Whenever p = ab, $a = \pm 1$ or $b = \pm 1$.

Theorem

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

■ We say that *a* and *b* are coprime or relatively prime iff:

- We say that $p \neq 1, 0, -1$ is prime iff it matches any of these equivalent definitions:
 - 1 Whenever $p \mid ab, p \mid a \text{ or } p \mid b$.
 - 2 Whenever p = ab, $a = \pm 1$ or $b = \pm 1$.

Theorem

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

We say that a and b are coprime or relatively prime iff:
Whenever c | a and c | b we must have c = 1, 0, -1.

• We say that $p \neq 1, 0, -1$ is prime iff it matches any of these equivalent definitions:

- 1 Whenever $p \mid ab$, $p \mid a$ or $p \mid b$.
- 2 Whenever p = ab, $a = \pm 1$ or $b = \pm 1$.

Theorem

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

■ We say that *a* and *b* are coprime or relatively prime iff:

```
1 Whenever c \mid a and c \mid b we must have c = 1, 0, -1.
```

2 GCD(a,b) = 1. (sometimes written as (a,b) = 1)

Example

Example

Let n be a positive integer such that $2^n - 1$ is a prime number. Prove that n is a prime number.

1 Suppose *n* is not prime. Let n = xy where $x, y \in \mathbb{N}$ and $x, y \ge 2$. Then $2^n - 1 = 2^{xy} - 1$.

Example

- **1** Suppose *n* is not prime. Let n = xy where $x, y \in \mathbb{N}$ and $x, y \ge 2$. Then $2^n 1 = 2^{xy} 1$.
- 2 We can write $2^{xy} 1$ as $(2^x)^y 1$ by index laws

Example

- 1 Suppose *n* is not prime. Let n = xy where $x, y \in \mathbb{N}$ and $x, y \ge 2$. Then $2^n 1 = 2^{xy} 1$.
- 2 We can write $2^{xy} 1$ as $(2^x)^y 1$ by index laws
- **3** $(2^x)^y 1 = (2^x 1)(2^{x(y-1)} + 2^{x(y-2)} + 2^{x(y-3)} + \dots + 2^2 + 2 + 1)$

Example

- **1** Suppose *n* is not prime. Let n = xy where $x, y \in \mathbb{N}$ and $x, y \ge 2$. Then $2^n 1 = 2^{xy} 1$.
- 2 We can write $2^{xy} 1$ as $(2^x)^y 1$ by index laws
- **3** $(2^x)^y 1 = (2^x 1)(2^{x(y-1)} + 2^{x(y-2)} + 2^{x(y-3)} + \dots + 2^2 + 2 + 1)$
- 4 Since $2^n 1$ is divisible by $2^x 1$, and $1 < 2^x 1 < 2^n 1$, it cannot be prime. This is a contradiction.

Example

- **1** Suppose *n* is not prime. Let n = xy where $x, y \in \mathbb{N}$ and $x, y \ge 2$. Then $2^n 1 = 2^{xy} 1$.
- 2 We can write $2^{xy} 1$ as $(2^x)^y 1$ by index laws
- **3** $(2^x)^y 1 = (2^x 1)(2^{x(y-1)} + 2^{x(y-2)} + 2^{x(y-3)} + \dots + 2^2 + 2 + 1)$
- 4 Since $2^n 1$ is divisible by $2^x 1$, and $1 < 2^x 1 < 2^n 1$, it cannot be prime. This is a contradiction.
- 5 Thus, *n* must be prime!

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

1 Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1, b = 2k - 1, for $k \in \mathbb{Z}$ and k > 1.

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1, b = 2k - 1, for $k \in \mathbb{Z}$ and k > 1.

2 In this case, we need to show that $(2k+1)^{2k-1} + (2k-1)^{2k+1}$ has a factor of 4k.

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1, b = 2k - 1, for $k \in \mathbb{Z}$ and k > 1.

2 In this case, we need to show that $(2k+1)^{2k-1} + (2k-1)^{2k+1}$ has a factor of 4k.

3 Notice that $(2k \pm 1)^2 = 4k^2 \pm 4k + 1$, so $(2k+1)^{2k-1} = ((2k+1)^2)^{k-1} (2k+1)$ can be expanded into the form 4kn + 2k + 1 for some $n \in \mathbb{Z}$, and similarly for $(2k-1)^{2k+1}$.

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1, b = 2k - 1, for $k \in \mathbb{Z}$ and k > 1.

2 In this case, we need to show that $(2k+1)^{2k-1} + (2k-1)^{2k+1}$ has a factor of 4k.

3 Notice that $(2k \pm 1)^2 = 4k^2 \pm 4k + 1$, so $(2k+1)^{2k-1} = ((2k+1)^2)^{k-1} (2k+1)$ can be expanded into the form 4kn + 2k + 1 for some $n \in \mathbb{Z}$, and similarly for $(2k-1)^{2k+1}$.

4 Thus, $(2k+1)^{2k-1} + (2k-1)^{2k+1} = 4kn' + 2k + 1 + 2k - 1 = 4k(n'+1)$ for some $n' \in \mathbb{Z}$, so 4k is a divisor.

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1and b > 1 such that $a^b + b^a$ is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1, b = 2k - 1, for $k \in \mathbb{Z}$ and k > 1.

2 In this case, we need to show that $(2k+1)^{2k-1} + (2k-1)^{2k+1}$ has a factor of 4k.

3 Notice that $(2k \pm 1)^2 = 4k^2 \pm 4k + 1$, so $(2k+1)^{2k-1} = ((2k+1)^2)^{k-1} (2k+1)$ can be expanded into the form 4kn + 2k + 1 for some $n \in \mathbb{Z}$, and similarly for $(2k-1)^{2k+1}$.

4 Thus, $(2k+1)^{2k-1} + (2k-1)^{2k+1} = 4kn' + 2k + 1 + 2k - 1 = 4k(n'+1)$ for some $n' \in \mathbb{Z}$, so 4k is a divisor.

Since gcd(2k + 1, 2k - 1) = 1, and we can take any k > 1, we have infinitely many distinct pairs satisfying the conditions.