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CPMSOCWhat is Number Theory?
In algebra, we usually deal with continuous quantities, like real or complex numbers.

In number theory, we restrict ourselves to discrete quantities, like integers or natural
numbers.
This generally makes the questions harder.

Theorem (Fermat’s Last Theorem, 1637-1995)

an + bn = cn has no integer solutions for n > 2.

Key topics in number theory include divisibility, primality, and partitioning.
Key techniques include modular arithmetic and algebraic manipulations.
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CPMSOCModular Arithmetic
We say that a ≡ b (mod n) when it matches any of these equivalent definitions:

1 a− b = kn for some integer k.
2 a = kn+ b for some integer k.
3 a and b have the same remainder when divided by n.

4 ≡ 13 ≡ −5 (mod 9)
0 ≡ 3 (mod 3), 1 ≡ 4 (mod 3), 2 ≡ 5 (mod 3), 3 ≡ 6 (mod 3), . . .

Modular equivalence, written as ≡, is similar to = in a number of ways, so we say it is
an equivalence relation.
It is transitive:
3 ≡ 7 (mod 4) and 7 ≡ 15 (mod 4) implies 3 ≡ 15 (mod 4), just as
a = b, b = c =⇒ a = c.
It is reflexive:
a ≡ a (mod n), just as a = a.
It is symmetric:
a ≡ b (mod n) implies b ≡ a (mod n), just as a = b =⇒ b = a.
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CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).

If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).

If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).

If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).

If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).

If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).

p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Modular equivalence has some other fun properties.

n ≡ 0 (mod n)

If a ≡ b (mod n), then ka ≡ kb (mod kn).
If a ≡ b (mod n), then a+ c ≡ b+ c (mod n).
If a ≡ b (mod n), then ac ≡ bc (mod n).
If a ≡ b (mod n), then ak ≡ bk (mod n).
If p is prime, then for every a (p ̸ |a) there exists b such that ab ≡ 1 (mod p).
If p is prime, then ap ≡ a (mod p) (Fermat’s little theorem).
p is prime iff (p− 1)! ≡ −1 (mod p) (Wilson’s theorem).

CPMSoc Mathematics Number Theory 25.03.2021 4 / 10



CPMSOCModular Arithmetic
Example

Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?

1 Consider the set of integers given by ni = 3 · 4i for i = 1, 2, . . . , 2000.

2 Now any sum of these integers can be written as 4k
(
3 + 4k

′
x
)

for some k, k′, x ∈ N.

3 If this were a perfect square, then we could write 4k
(
3 + 4k

′
x
)
= n2 for some n ∈ Z.

4 However, we then have some integer u = 2−kn where u2 = 3 + 4k
′
x ≡ 3 (mod 4).

5 For any perfect square, we have n2 ≡ 02, 12, 22, or 32 ≡ 0 or 1 (mod 4).
6 Since all perfect squares have remainder 0 or 1, we have a contradiction.
7 Thus, every subset sum is not a perfect square.
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CPMSOCDivisibility
We say a | b ("a divides b") when b = ka = ka+ 0 for some integer k.

Alternatively, when a ≡ 0 (mod b).
2 | 4 | 12 and 2 | 6 | 12 but 4 ̸ |6.
Divisibility is similar to ≥ and ≤ in a number of ways, so we say it is a partial order
relation.
It is transitive:
2 | 4 and 4 | 8 implies 2 | 8, just as π ≥ 3 and 3 ≥ e implies π ≥ e.
It is reflexive:
7|7, just as π ≥ π.
It is antisymmetric:
4 | 8 implies 8 ̸ |4, just as x ≥ y implies y ̸≥ x unless y = x.
If a | b, then b ̸ |a unless b = a.
Divisibility is not a total order, since 4 ̸ |7 and 7 ̸ |4, while at least one of x ≥ y or y ≥ x
must always be true.
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CPMSOCDivisibility
Example

Show that for any non-negative integer n, 1n + 2n + 3n + 4n is divisible by 5 if and only if
n is not divisible by 4.

1 If 4|n, then n = 4k. Note that 14 ≡ 1 (mod 5), 24 = 16 ≡ 1 (mod 5), 34 = 81 ≡ 1
(mod 5), 44 = 256 ≡ 1 (mod 5).

2 So 1n + 2n + 3n + 4n = 14k + 24k + 34k + 44k ≡ 1 + 1 + 1 + 1 ≡ 4 (mod 5)

3 Otherwise when n ≡ 1 (mod 4):
14k+1 + 24k+1 + 34k+1 + 44k+1 ≡ 1 + 2 + 3 + 4 ≡ 10 ≡ 0 (mod 5)

4 When n ≡ 2 (mod 4): 14k+2 + 24k+2 + 34k+2 + 44k+2 ≡ 1 + 4 + 9 + 16 ≡ 30 ≡ 0
(mod 5)

5 When n ≡ 3 (mod 4): 14k+3 + 24k+3 + 34k+3 + 44k+3 ≡ 1 + 8 + 27 + 64 ≡ 100 ≡ 0
(mod 5)

6 Therefore, true! (by cases)
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CPMSOCPrimality and Coprimality
We say that p ̸= 1, 0,−1 is prime iff it matches any of these equivalent definitions:

1 Whenever p | ab, p | a or p | b.
2 Whenever p = ab, a = ±1 or b = ±1.

Theorem

Chebyshev said, and I’ll say it again - there is always a prime between n and 2n.

We say that a and b are coprime or relatively prime iff:

1 Whenever c | a and c | b we must have c = 1, 0,−1.
2 GCD(a, b) = 1. (sometimes written as (a, b) = 1)
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CPMSOCPrimality and Coprimality
Example

Let n be a positive integer such that 2n − 1 is a prime number. Prove that n is a prime
number.

1 Suppose n is not prime. Let n = xy where x, y ∈ N and x, y ≥ 2. Then
2n − 1 = 2xy − 1.

2 We can write 2xy − 1 as (2x)y − 1 by index laws
3 (2x)y − 1 = (2x − 1)(2x(y−1) + 2x(y−2) + 2x(y−3) + ...+ 22 + 2 + 1)

4 Since 2n − 1 is divisible by 2x − 1, and 1 < 2x − 1 < 2n − 1, it cannot be prime. This is
a contradiction.

5 Thus, n must be prime!
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CPMSOCPrimality and Coprimality
Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that ab + ba is divisible by a+ b.

1 Since we want a factor of a+ b, we keep the sum simple, so we can try a = 2k + 1,
b = 2k − 1, for k ∈ Z and k > 1.

2 In this case, we need to show that (2k + 1)2k−1 + (2k − 1)2k+1 has a factor of 4k.

3 Notice that (2k± 1)2 = 4k2 ± 4k+ 1, so (2k+ 1)2k−1 =
(
(2k + 1)2

)k−1
(2k+ 1) can be

expanded into the form 4kn+ 2k + 1 for some n ∈ Z, and similarly for (2k − 1)2k+1.
4 Thus, (2k + 1)2k−1 + (2k − 1)2k+1 = 4kn′ + 2k + 1 + 2k − 1 = 4k(n′ + 1) for some

n′ ∈ Z, so 4k is a divisor.
5 Since gcd(2k + 1, 2k − 1) = 1, and we can take any k > 1, we have infinitely many

distinct pairs satisfying the conditions.
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b = 2k − 1, for k ∈ Z and k > 1.

2 In this case, we need to show that (2k + 1)2k−1 + (2k − 1)2k+1 has a factor of 4k.

3 Notice that (2k± 1)2 = 4k2 ± 4k+ 1, so (2k+ 1)2k−1 =
(
(2k + 1)2

)k−1
(2k+ 1) can be

expanded into the form 4kn+ 2k + 1 for some n ∈ Z, and similarly for (2k − 1)2k+1.
4 Thus, (2k + 1)2k−1 + (2k − 1)2k+1 = 4kn′ + 2k + 1 + 2k − 1 = 4k(n′ + 1) for some

n′ ∈ Z, so 4k is a divisor.
5 Since gcd(2k + 1, 2k − 1) = 1, and we can take any k > 1, we have infinitely many

distinct pairs satisfying the conditions.
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