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m In algebra, we usually deal with continuous quantities, like real or complex numbers.
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What is Number Theory? > cpmsoc

m In algebra, we usually deal with continuous quantities, like real or complex numbers.

m In number theory, we restrict ourselves to discrete quantities, like integers or natural
numbers.

m This generally makes the questions harder.

Theorem (Fermat’s Last Theorem, 1637-1995)

a™ + b" = ¢ has no integer solutions forn > 2.

m Key topics in number theory include divisibility, primality, and partitioning.
m Key techniques include modular arithmetic and algebraic manipulations.
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m We say that a« = b (mod n) when it matches any of these equivalent definitions:
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m We say that a = b (mod n) when it matches any of these equivalent definitions:
a — b = kn for some integer k.
a = kn + b for some integer k.
a and b have the same remainder when divided by n.
B 4=13=-5 (mod 9)
B 0=3 (mod3),1 =4 (mod 3),2=5 (mod 3),3 =6 (mod 3),...
m Modular equivalence, written as =, is similar to = in a number of ways, so we say it is
an equivalence relation.
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m We say that a = b (mod n) when it matches any of these equivalent definitions:

a — b = kn for some integer k.
a = kn + b for some integer k.
a and b have the same remainder when divided by n.

B 4=13=-5 (mod 9)
B 0=3 (mod3),1 =4 (mod 3),2=5 (mod 3),3 =6 (mod 3),...
m Modular equivalence, written as =, is similar to = in a number of ways, so we say it is
an equivalence relation.
m ltis transitive:
3=7 (mod 4) and 7 = 15 (mod 4) implies 3 =15 (mod 4), just as
a=bb=c = a=c
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m We say that a = b (mod n) when it matches any of these equivalent definitions:
a — b = kn for some integer k.
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m We say that a = b (mod n) when it matches any of these equivalent definitions:
a — b = kn for some integer k.
a = kn + b for some integer k.
a and b have the same remainder when divided by n.

B 4=13=-5 (mod 9)
B 0=3 (mod 3),1=4 (mod 3),2=5 (mod 3),3=06 (mod 3),...
m Modular equivalence, written as =, is similar to = in a number of ways, so we say it is
an equivalence relation.
m ltis transitive:
3=7 (mod 4) and 7 = 15 (mod 4) implies 3 =15 (mod 4), just as
a=bb=c = a=c
m ltis reflexive:
a =a (mod n), justas a = a.
m |t is symmetric:
a=b (mod n) implies b =a (mod n),justasa =0 — b=a.
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Modular equivalence has some other fun properties.
B n=0 (modn)
B [fa=b (mod n), then ka = kb (mod kn).
B fa=b (modn),thena+c=b+c (mod n).
m If a =0 (mod n), then ac = be (mod n).
m If a =b (mod n), then a* = b* (mod n).
m If p is prime, then for every a (p Ja) there exists b such that ab =1 (mod p).
m If pis prime, then a? = a (mod p) (Fermat’s little theorem).
m pis primeiff (p — 1)! = —1 (mod p) (Wilson’s theorem).
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Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?
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Example

Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?
Consider the set of integers given by n; = 3 - 4% fori = 1,2,...,2000.

Now any sum of these integers can be written as 4% (3 + 4"1) for some &, k', z € N.
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Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?

Consider the set of integers given by n; = 3 - 4% for i = 1,2, ..., 2000.
Now any sum of these integers can be written as 4* (3 + 4’%) for some k, k', z € N.
If this were a perfect square, then we could write 4% (3 + 4’“'a;> = n? for some n € Z.

However, we then have some integer u = 2-Fn where u? = 3 + 42 = 3 (mod 4).
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Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?
Consider the set of integers given by n; = 3 - 4% for i = 1,2, ..., 2000.

Now any sum of these integers can be written as 4* (3 + 4’%) for some k, k', z € N.

If this were a perfect square, then we could write 4% (3 + 4’“'3;) = n? for some n € Z.

However, we then have some integer v = 2~ %n where u? = 3 + 4z = 3 (mod 4).
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Can you find a set of 2000 distinct positive integers such that the sum of the members of
every subset is not a perfect square?

Consider the set of integers given by n; = 3 - 4% for i = 1,2, ..., 2000.

Now any sum of these integers can be written as 4* (3 + 4’%) for some k, k', z € N.

If this were a perfect square, then we could write 4% (3 + 4’“';:;) = n? for some n € Z.

However, we then have some integer v = 2~ %n where u? = 3 + 4z = 3 (mod 4).
For any perfect square, we have n? = 02,12,22, or32 =0 or 1 (mod 4).

A Since all perfect squares have remainder 0 or 1, we have a contradiction.

Thus, every subset sum is not a perfect square.
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m We say a | b ("a divides b") when b = ka = ka + 0 for some integer k.
m Alternatively, when a = 0 (mod b).
2|4|12and 2|6 | 12 but 4 /6.

m Divisibility is similar to > and < in a number of ways, so we say it is a partial order
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m We say a | b ("a divides b") when b = ka = ka + 0 for some integer k.
m Alternatively, when a = 0 (mod b).
2|4|12and 2|6 | 12 but 4 /6.
m Divisibility is similar to > and < in a number of ways, so we say it is a partial order
relation.
m ltis transitive:
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m We say a | b ("a divides b") when b = ka = ka + 0 for some integer k.
m Alternatively, when a = 0 (mod b).
2|4|12and 2|6 | 12 but 4 /6.
m Divisibility is similar to > and < in a number of ways, so we say it is a partial order
relation.
m |t is transitive:
2|4and4|8implies 2|8, justas 7 > 3 and 3 > e implies 7 > e.
m ltis reflexive:
7|7, justas w > 7.
m It is antisymmetric:
4 | 8 implies 8 f4, just as = > y implies y # x unless y = «.
If a | b,then b fa unless b = a.
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m We say a | b ("a divides b") when b = ka = ka + 0 for some integer k.

Alternatively, when a = 0 (mod b).

2|4|12and 2|6 | 12 but 4 /6.

Divisibility is similar to > and < in a number of ways, so we say it is a partial order
relation.

It is transitive:

2|4and4|8implies 2|8, justas 7 > 3 and 3 > e implies 7 > e.
It is reflexive:

7|7, justas w > 7.

It is antisymmetric:

4 | 8 implies 8 f4, just as = > y implies y # x unless y = «.

If a | b,then b fa unless b = a.

Divisibility is not a total order, since 4 /7 and 7 f4, while at leastoneof z > yory > =
must always be true.
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Divisibility > cPmsoc

Show that for any non-negative integer n, 1" + 2™ + 3™ + 4™ is divisible by 5 if and only if
n is not divisible by 4.
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If 4|n, then n = 4k. Note that 12 = 1 (mod 5),2* =16 =1 (mod 5), 3* =81 =1
(mod 5), 4* = 256 = 1 (mod 5).
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Show that for any non-negative integer n, 1" + 2™ + 3™ + 4™ is divisible by 5 if and only if
n is not divisible by 4.

If 4|n, then n = 4k. Note that 12 = 1 (mod 5),2* =16 =1 (mod 5),3* =81 =1
(mod 5), 4* = 256 = 1 (mod 5).
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If 4|n, then n = 4k. Note that 12 = 1 (mod 5),2* =16 =1 (mod 5),3* =81 =1
(mod 5), 4* = 256 = 1 (mod 5).
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Show that for any non-negative integer n, 1" + 2™ + 3™ + 4™ is divisible by 5 if and only if
n is not divisible by 4.

If 4|n, then n = 4k. Note that 12 = 1 (mod 5),2* =16 =1 (mod 5),3* =81 =1
(mod 5), 4* = 256 = 1 (mod 5).

SO1m + 2" 4+ 37440 =14 p 24 4 3% L 4% =14 14 14+1=4 (mod 5)
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Divisibility > cPmsoc

Show that for any non-negative integer n, 1" + 2™ + 3™ + 4™ is divisible by 5 if and only if
n is not divisible by 4.

If 4|n, then n = 4k. Note that 12 = 1 (mod 5),2* =16 =1 (mod 5),3* =81 =1
(mod 5), 4* = 256 = 1 (mod 5).

SO1m + 2" 4+ 37440 =14 p 24 4 3% L 4% =14 14 14+1=4 (mod 5)

Otherwise when n =1 (mod 4):
14RFL okl g gdktl 4 gdk+l =1 194 344=10=0 (mod 5)

B Whenn =2 (mod 4): 14k+2 4 24k+2 4 34k+2 4 y4h42 =1 1 4 1 94 16=30=0
(mod 5)

Whenn =3 (mod 4): 14643 4 24k+3 4 34k+3 4 4443 =1 1 8427464 =100=0
(mod 5)

B Therefore, true! (by cases)
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m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:
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m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:
Whenever p | ab, p | a or p | b.
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m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:

Whenever p | ab, p|a orp | b.
Whenever p = ab, a = +1 or b = +1.

CPMSoc Mathematics Number Theory 25.03.2021 8/10



Primality and Coprimality P cpmsoc

m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:

Whenever p | ab, p|a orp | b.
Whenever p = ab, a = £1 0or b = +1.

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.
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m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:

Whenever p | ab, p|a orp | b.
Whenever p = ab, a = £1 0or b = +1.

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

m We say that a and b are coprime or relatively prime iff:
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m We say that p # 1,0, —1 is prime iff it matches any of these equivalent definitions:

Whenever p | ab, p|a orp | b.
Whenever p = ab, a = £1 0or b = +1.

Chebyshev said, and I'll say it again - there is always a prime between n and 2n.

m We say that a and b are coprime or relatively prime iff:

Whenever ¢ | a and ¢ | b we must have ¢ = 1,0, —1.
GCD(a,b) = 1. (sometimes written as (a,b) = 1)
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Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.
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Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.

Suppose n is not prime. Let n = xy where z,y € Nand z,y > 2. Then
M 1 =292%_1,
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Example

Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.

Suppose n is not prime. Let n = xy where x,y € Nand z,y > 2. Then
2" —1=2% -1,

We can write 2*¥ — 1 as (2%)Y — 1 by index laws
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Example

Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.

Suppose n is not prime. Let n = xy where x,y € Nand z,y > 2. Then
2" —1=2% -1,

We can write 2*¥ — 1 as (2%)¥ — 1 by index laws
(25) — 1= (2% — 1)(2°0—1) 4 22(w=2) 1 22(v=3) 4 4224 9241)

CPMSoc Mathematics Number Theory 25.03.2021 9/10



Primality and Coprimality P cpmsoc

Example

Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.

Suppose n is not prime. Let n = xy where x,y € Nand z,y > 2. Then
2" —1=2% -1,

We can write 2*¥ — 1 as (2%)¥ — 1 by index laws
(27)Y —1 = (2% — 1)(2*0=1) 4 22(w=2) L 92(y=3) + 1924 241)

Since 2" — 1 is divisible by 2* — 1, and 1 < 2¥ — 1 < 2™ — 1, it cannot be prime. This is
a contradiction.
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Primality and Coprimality P cpmsoc

Let n be a positive integer such that 2" — 1 is a prime number. Prove that n is a prime
number.

Suppose n is not prime. Let n = xy where x,y € Nand z,y > 2. Then
2" —1=2% -1,

We can write 2*¥ — 1 as (2%)¥ — 1 by index laws
(27)Y —1 = (2% — 1)(2*0=1) 4 22(w=2) L 92(y=3) + 1924 241)

Since 2™ — 1 is divisible by 2¥ — 1, and 1 < 2* — 1 < 2™ — 1, it cannot be prime. This is
a contradiction.

Thus, n must be prime!
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Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.
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Primality and Coprimality P cpmsoc

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1,
b=2k—1,forkcZand k > 1.
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Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1,
b=2k—1,forkecZand k > 1.

In this case, we need to show that (2k + 1)2¢~! + (2k — 1)?**+! has a factor of 4k.

CPMSoc Mathematics Number Theory 25.03.2021 10/10



Primality and Coprimality P cpmsoc

Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1,
b=2k—1,forkecZand k > 1.

In this case, we need to show that (2k + 1)%¢~! 4 (2k — 1)?**! has a factor of 4k.

Notice that (2k + 1)2 = 4k2 + 4k + 1, 50 (2k + 1)%~1 = ((2k +1)2)* 7" (2k 4 1) can be
expanded into the form 4kn + 2k + 1 for some n € Z, and similarly for (2k — 1)2%+1,
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Example

Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1,
b=2k—1,forkecZand k > 1.

In this case, we need to show that (2k + 1)%¢~! 4 (2k — 1)?**! has a factor of 4k.
Notice that (2k +1)? = 4k* £ 4k + 1, s0 (2k + 1)%*~1 = ((2k + 1)2)’“‘1 (2k + 1) can be
expanded into the form 4kn + 2k + 1 for some n € Z, and similarly for (2k — 1)2F+1,

Thus, (2k + 1)2*=1 + (2k — 1)?8FL = 4kn/ + 2k + 1 + 2k — 1 = 4k(n’ + 1) for some
n' € Z, so 4k is a divisor.
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Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1
and b > 1 such that a® + b® is divisible by a + b.

Since we want a factor of a + b, we keep the sum simple, so we can try a = 2k + 1,
b=2k—1,forkecZand k > 1.

In this case, we need to show that (2k + 1)%¢~! 4 (2k — 1)?**! has a factor of 4k.
Notice that (2k +1)? = 4k* £ 4k + 1, s0 (2k + 1)%*~1 = ((2k + 1)2)’“‘1 (2k + 1) can be
expanded into the form 4kn + 2k + 1 for some n € Z, and similarly for (2k — 1)2F+1,

Thus, (2k + 1)2*=1 4+ (2k — 1)%8+1 = 4kn/ + 2k 4+ 1 + 2k — 1 = 4k(n’ + 1) for some
n’ € Z, so 4k is a divisor.

Since ged(2k + 1,2k — 1) = 1, and we can take any k£ > 1, we have infinitely many
distinct pairs satisfying the conditions.
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