
1 Problem Set 1 Solutions
A1 Prove that log10 2 is irrational.

Solution

Assume for the sake of contradiction that log10 2 is rational. Since it is positive, then by assumption we can
write log10 2 = p

q for some positive integers p and q such that gcd(p, q) = 1. Taking 10 to the power of both sides

gives 2 = 10
p
q , so 2q = 10p. Since p ≥ 1, then 10p is divisible by 5 as 5|10, but 5 does not divide 2q , as it is a

power of 2, which yields a contradiction. Hence, log10 2 is irrational.

A2 Show that there does not exist a function f : Z → {1, 2, 3} such that f(x) 6= f(y) for all x, y ∈ Z such
that |x− y| ∈ {2, 3, 5}.

Solution

Assume that such an f exists. We focus on some particular function values. Let f(0) = a and f(5) = b,
where a, b ∈ 1, 2, 3, a 6= b. Since |5− 2| = 3, |2− 0| = 2, we have f(2) 6= a, b so f(2) is the remaining number,
say c. Finally, because |3 − 0| = 3, |3 − 5| = 2, we must have f(3) = c. Therefore, f(2) = f(3). Translating
the argument to an arbitrary number x instead of 0, we obtain f(x+ 2) = f(x+ 3) and so f is constant. But this
violates the condition from the definition. It follows that such a function does not exist.

A3 Every point of three-dimensional space is coloured red, green or blue. Show that one of the colours attains
all distances; that is, any positive real number represents the distance between two points of this colour.

Solution

Arguing by contradiction, we assume that none of the colours has the desired property. Then there exist dis-
tances r ≥ g ≥ b such that r is not attained by red points, g by green points, and b by blue points (without loss of
generality).

Consider a sphere of radius r centred at a red point. Its surface has green and blue points only. Since g, b ≤ r,
the surface of the sphere must contain both green and blue points. Choose a green point M on the sphere. There
exist two points P and Q on the sphere such that MP = MQ = g and PQ = b, since g ≥ b. So on the one
hand, either P or Q is green, or else P and Q are both blue. Then either there exist two green points at distance g,
namely M and P , or M and Q, or there exist two blue points at distance b. This contradicts the initial assumption.
The conclusion follows.

A4 Show that no set of nine consecutive integers can be partitioned into two sets with the product of the ele-
ments of the first set equal to the product of the elements of the second set.

Solution

Assume that such numbers do exist, and let us look at their prime factorisations. For primes p greater than
7, at most one of the numbers can be divisible by p, and the partition cannot exist. Thus the prime factors of the
given numbers can only be 2, 3, 5 and 7.

We now look at repeated prime factors. Because the difference between two numbers divisible by 4 is at least
4, at most three of the nine numbers are divisible by 4. Also, at most one is divisible by 9, at most one by 25, and
at most one by 49. Eliminating there at most 3 + 1 + 1 + 1 = 6 numbers, we are left with at least three numbers
among the nine that do not contain repeated prime factors. They are among the divisors of 2 · 3 · 5 · 7, and so
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among the numbers
2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.

Because the difference between the largest and the smallest of there three numbers is at most 9, none of them can
be greater than 21. We have to look at the sequence 1, 2, 3, . . . 29. Any subsequence of consecutive integers of
length 9 that has a term greater than 10 contains a prime number greater than or equal to 11, which is impossible.
And from 1, 2 . . . 10, we cannot select nine consecutive numbers with the required property. This contradicts our
assumption, and the problem is solved.

A5 Prove that infinitely many primes are one more than a multiple of 4.

Solution

Suppose n > 1 is an integer. We define N = (n!)2 + 1. Suppose p is the smallest prime divisor of N . Since
N is odd, p cannot be equal to 2. It is clear that p is bigger than n (otherwise p|1). If we show that p is of the form
4k + 1 then we can repeat the procedure replacing n with p and we produce an infinite sequence of primes of the
form 4k + 1.

We know that p has the form 4k + 1 or 4k + 3. Since p|N we have

(n!)2 ≡ −1 (mod p).

Therefore,
(n!)p−1 ≡ (−1)

p−1
2 (mod p).

Using Fermat’s Little Theorem we get
(−1)

p−1
2 ≡ 1 (mod p).

If p was of the form 4k + 3 then p−1
2 = 2k + 1 is odd and therefore we obtain −1 ≡ 1 (mod p) or p|2 which is

a contradiction since p is odd. Hence, p must be of the form 4k + 1. By making n arbitrarily large, we can find
infinitely many primes that are one more than a multiple of four.

A6 Given any sequence of mn+1 real numbers, show that some subsequence of length (m+1) is increasing
or some subsequence of length (n+ 1) is decreasing.

Solution

Assume that the result is false. For each number x in the sequence, form the ordered pair (i, j) where i is
the length of the longest increasing subsequence beginning with x and j is the length of the longest decreasing
subsequence ending with x. Since the result is false, then 1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus we have mn + 1
ordered pairs, of which at most mn are distinct. Hence, two members of the sequence, say a and b, are associ-
ated with the same ordered pair (s, t). Without loss of generality we may assume that a precedes b in the sequence.

If a < b, then a, together with the longest increasing subsequence beginning with b, is an increasing subse-
quence of length (s+1), contradicting the fact that s is the length of the longest increasing subsequence beginning
with a. Hence, a ≥ b. But then, b, together with the longest decreasing subsequence ending with a, is a s sub-
sequence of length (t + 1), contradicting that the longest decreasing subsequence ending with b is of length t.
Therefore, we have reached a contradiction, so the result is true.

A7 Show that there does not exist a strictly increasing function f : N → N satisfying f(2) = 3 and
f(mn) = f(m)f(n) for all m,n ∈ N

Solution

Arguing by contradiction, let us assume that such a function exists. Set f(3) = k. Using the inequality
23 < 32, we obtain

33 = f(2)3 = f(23) < f(32) = f(3)2 = k2,
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hence k ≥ 6. Similarly, using 33 < 25, we obtain

k3 = f(3)3 = f(33) < f(25) < f(2)5 = 35 = 243 < 343 = 73.

This implies that k ≤ 6, and consequently k can only be equal to 6. Thus, we should have f(2) = 3 and
f(3) = 6.The monotonicity of f implies that 2u < 3v if and only if 3u < 6v , where u, v are positive integers.
Taking logarithms this means that u

v < log2 3 if an only if u
v < log3 6. Since the rationals are dense in the reals,

it follows that log2 3 = log3 6. This can be written as log2 3 = 1
log2 3 + 1, and so log2 3 is the positive solution of

the quadratic equation x2 − x− 1 = 0, which is the golden ratio 1+
√
5

2 . The equality

2
1+
√

5
2 = 3

translates to 21+
√
5 = 9. But this would imply

65536 = 25×3.2 < 25(1+
√
5) = 95 = 59049.

We have reached a contradiction, which proves the the function f cannot exist.
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