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What is Competitive Mathematics?



CPMSOCCompetitive Mathematics at UNSW
Simon Marais Mathematics Competition (SMMC)

Happens in mid-October
Sign up by August through the university
Mathematics department posts information for signing up closer to the date
More than $50,000 in individual prizes, and internship offers.

Meet people
Having fun
Being employable
Solving real-world problems

"Mathematics is distilled thinking" - Poh Shen-Loh
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CPMSOCSimon Marais Mathematics Competition
Broken up into two sessions, 3 hours each
Each session has 4 questions, for a total of 8

Each problem is worth 7 marks regardless of difficulty
Can include an open problem – marks awarded for reasonable progress

The Problems

Proof-based
Solutions are much easier to explain than to invent
Require unusual techniques, observations, or combinations
Usually chosen to be aesthetically pleasing
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CPMSOCSubject areas

Number theory
Geometry
Polynomials
Vectors
Complex numbers
Calculus
Functional equations

Inequalities
Combinatorics & probability
Combinatorial games
Analysis
Trigonometry
Graph theory
Group theory
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CPMSOCProblems vs. Exercises

“An exercise is a question that tests the student’s mastery of a narrowly focused technique
... the path towards solution is always apparent. In contrast, a problem is a question
that cannot be answered immediately. Problems are often open-ended, paradoxical, and
sometimes unsolvable, and require investigation before one can come close to a solu-
tion. Problems and problem solving are at the heart of mathematics.”

– Paul Zeitz
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Learning Competitive Mathematics



CPMSOCHow to Learn Problem-solving
Practice strategically
Read solutions

Strategies

Select good notation

Modify the problem

Work backwards

Consider concrete examples

Make conjectures

Techniques

Induction
Invariants
Cases/exhaustion
Pigeonhole principle
Extremal principle
Telescoping
Symmetry
Generating functions
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CPMSOCResources

Books
Problem Solving Tactics (Pasquale et. al., 2014)
The Art and Craft of Problem Solving (Zeitz, 2007)
Putnam and Beyond (Gelca & Andreescu, 2007)
Solving Mathematical Problems (Tao, 2006)

Other

YouTube
The Putnam Archive
Wikipedia
Discord (discord.gg/rPFkGg3PT6)
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Proof by Contradiction



CPMSOCGeneral Form
Proof by Contradiction

1 Suppose P .
2 Q follows from P . (P =⇒ Q)
3 Q is false. ¬Q
4 P is false. ¬P

Theorem (Law of Contraposition)

P → Q ⇐⇒ ¬Q → ¬P
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CPMSOC
Example

Prove that there are infinitely many primes.

Suppose there are finitely many primes.
Let these primes be p1, p2, p3, . . . , pn.

Then there exists q = p1 · p2 · p3 · · · pn + 1.
Note that q is larger than any prime, so must be composite.
Note also that q is not divisible by any prime, since division by pi leaves remainder 1.

Any composite number is divisible by a prime, so q is divisible by a prime.
Therefore, q does not exist. So, there must be infinitely many primes.
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CPMSOC
Example

Let a1, a2, . . . , an be a rearrangement of the numbers 1, 2, . . . , n.
Show that if n is odd then A = (a1 − 1)(a2 − 2) · · · (an − n) is even.

Suppose A is odd.
Then each of (a1 − 1), (a2 − 2), . . . , (an − n) are odd.

This means a1, a3, a5, . . . , an are even, and a2, a4, a6, . . . , an−1 are odd.
So a1, a2, . . . , an contains (n+1)/2 even numbers and (n−1)/2 odd numbers.

1, 2, 3, . . . , n contains (n−1)/2 even numbers and (n+1)/2 odd numbers.
Thus, A is even.
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CPMSOC
Example

The union of nine planar surfaces, each of area equal to 1, has a total area equal to 5.
Prove that the overlap of some two of these surfaces has an area greater than or equal
to 1/9.

Suppose that the overlap of every two surfaces is less than 1/9.
Number the surfaces arbitrarily S1, S2, . . . , S9.
Then S1 ∪ S2 has area greater than 1 + (1− 1/9) = 1 + 8/9.
Similarly, S1 ∪ S2 ∪ S3 has area greater than 1 + 8/9 + (1− 1/9 − 1/9) = 1 + 8/9 + 7/9.
This pattern continues, so that S1 ∪ S2 ∪ · · · ∪ S9 has area greater than

1 +
8

9
+

7

9
+ · · ·+ 1

9
= 5.

This is a contradiction, so the overlap of some two surfaces must be at least 1/9.
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CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.

Then certainly the minimum of the polynomial is negative. Let a be a minimum.

Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.

Now, suppose that p(x) < 0 for some real x.

Then certainly the minimum of the polynomial is negative. Let a be a minimum.

Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.

Then certainly the minimum of the polynomial is negative. Let a be a minimum.
Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.
Then certainly the minimum of the polynomial is negative. Let a be a minimum.

Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.
Then certainly the minimum of the polynomial is negative. Let a be a minimum.
Then p′′(a) ≥ 0, since a is a minimum.

So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.
Then certainly the minimum of the polynomial is negative. Let a be a minimum.
Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.

Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Let p(x) be a polynomial with even degree and positive leading coefficient.
Show that if p(x)− p′′(x) ≥ 0, then p(x) ≥ 0 for all real x.

Note firstly that since the polynomial is of even degree, p(x) → ∞ as x → ±∞. So,
the polynomial has a minimum value which is finite.
Now, suppose that p(x) < 0 for some real x.
Then certainly the minimum of the polynomial is negative. Let a be a minimum.
Then p′′(a) ≥ 0, since a is a minimum.
So p(a)− p′′(a) < 0, which is a contradiction.
Thus, p(x) ≥ 0 for all real x.

CPMSoc Mathematics Introduction to Competitive Mathematics 11.03.2021 12 / 15



CPMSOC
Example

Show that the interval [0, 1] cannot be partitioned into two disjoint sets A and B such that
B = A+ a for some real number a.

Since we can swap the role of A and B if a is negative, we can assume a > 0.
Now, [0, a) ⊆ A since if some b < a were in B, we would require b− a < 0 to be in A.
This means that [a, 2a) ⊆ B, and we can continue this pattern using induction.

Specifically, if [2ka, (2k + 1)a) ⊆ A, then [(2k + 1)a, (2k + 2)a) ⊆ B. If
b ∈ [(2k + 2)a, (2k + 3)a) were to be in B as well, then b− a ∈ [(2k + 1)a, (2k + 2)a)
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CPMSOC
Example

Prove that
√
2 +

√
3 +

√
5 is an irrational number.

Suppose that
√
2 +

√
3 +

√
5 = r, where r is rational.

Then rearranging and squaring both sides, we get 5 + 2
√
6 = r2 + 5− 2r

√
5.

But then
√
6 + r

√
5 must be rational.

Squaring this gives 6 + 5r2 + 2r
√
30, which must be rational.

Again, we see that
√
30 must be rational.

So,
√
30 = p/q where gcd(p, q) = 1 and q ̸= 0.

Squaring and rearranging gives p2 = 30q2.

Then p2 is even, and so p is too. But then p2 has a factor of 4.
Since q2 = p2/30, q2 has a factor of 2, so q is even.
Thus, gcd(p, q) ̸= 1, deriving a contradiction.
That is,

√
2 +

√
3 +

√
5 is irrational.
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CPMSOC
Example

We call a 5-tuple of integers arrangeable if its elements can be labelled a, b, c, d, e in some
order so that a− b+ c−d+e = 29. Determine all 2017-tuples of integers n1, n2, . . . , n2017

such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in
consecutive positions on the circle is arrangeable.
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consecutive positions on the circle is arrangeable.

First note that we can subtract 29 from each ni so that the condition becomes
a− b+ c− d+ e = 0 instead.

Now if we add five consecutive ni, we get

ni + ni+1 + ni+2 + ni+3 + ni+4 = (ni − ni+1 + ni+2 − ni+3 + ni+4) + 2(ni+1 + ni+3)

= 2(ni+1 + ni+3),

which is even.
Replacing i with i+ 1 and subtracting, we find that ni − ni+5 is also even.
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CPMSOC
Example

We call a 5-tuple of integers arrangeable if its elements can be labelled a, b, c, d, e in some
order so that a− b+ c−d+e = 29. Determine all 2017-tuples of integers n1, n2, . . . , n2017

such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in
consecutive positions on the circle is arrangeable.

Since ni − ni+5 is even, ni and ni+5 have the same parity.

Then n1, n6, . . . , n2016 have the same parity. But the numbers are arranged clockwise,
so n2016 and n4 have the same parity, and the pattern continues, until we find that
every ni has the same parity.
Now, since ni + ni+1 + ni+2 + ni+3 + ni+4 is even, we can conclude that every ni is
even.
Now we can suppose that we have some solution for which

∑2017
i=1 |ni| = S is minimal.
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such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in
consecutive positions on the circle is arrangeable.

Since every ni is even, we can take ni/2 as a new solution.

If S > 0, then this solution has a smaller absolute sum of S/2, so must contradict the
minimality of the original solution.
Thus, S = 0, but then ni = 0.
We subtracted 29 from each ni originally, so the only solution is then ni = 29 for all i.
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