* Competitive
< > Programming and
Mathematics

Society

O-Week contest debrief
CPMSoc

Table of contents P cPMsoc
El Introduction

m Welcome
Pl Mathematics Solutions

m Quick Sum

m Drawing Aces

m Find a Function

m Triangular Edges

m Horrendously Complex

m Manhattan’s Quadrilateral
El Programming Solutions
Addition
Binary Help
Counting Rectangles
Burger
Gerrymandering
Shapes

CPMSoc 0O-Week contest debrief 20/2/23 1/27

Welcome 2 cpMsoc

m Join our subcom!

m Mathematics workshops will (probably) run every odd-numbered week (1, 3, 5, ...)
m Programming ones are every other week

m Slides will be uploaded on website (unswcpmsoc.com)

m Competitive maths ain’t so competitive!

CPMSoc 0O-Week contest debrief 20/2/23 2/27

Quick Sum 2 cPMsoc

m Quick! Sum!

m If you didn’t add all the numbers within the first second of the contest starting you

missed out on winning a free lamborghini. L
2023(2023+1)
2

CPMSoc 0O-Week contest debrief 20/2/23 3/27

Drawing Aces P cpmsoc

m If 4 of the cards have hearts suits, then one of the aces must be a hearts card

m Probability that one ace is a heart is %
11 10

m Probability three more hearts are selected is i% X 77 X z= (exclude all aces since
we’ve already selected one as a heart)

ity e 1 12 11 10 _ 55
m Thus total probability is 5 x 52 X 3 X 36 = 618

CPMSoc 0O-Week contest debrief 20/2/23 4/27

Find a Function (> cpmsoc

m Substitute z = 1: f(y) = f(1)y

m Let f(1) = A for any real constant A.

m Substituting back: - A-y —y - A -2 = 0, which always holds.
m So f(z) = Az for any real constant A covers all solutions.

CPMSoc 0O-Week contest debrief 20/2/23 5/27

Triangular Edges P cpmsoc

m Let the number of triangles a vertex touches be its "degree".

m Call the number of vertexes with degree i n;, where i € {1,2,3,4,5,6}

m The total degree counts each triangle 3 times, so if there are n triangles, we have
m Y% | in; = 3n. Taking modulo 3, we have the sum

B+ 2ny +ng+2n5 = (n1 +nq) +2(n2 +n5) =2 +y = 0mod 3

m So 2z + y is divisible by 3.

CPMSoc 0O-Week contest debrief 20/2/23 6/27

Horrendously Complex

So,

CPMSoc

3x2 + 12z + 11

% (z+D(x+2)(x+3) 1

> cPpmsoc

1 1

z+1)(z+2)(z+3)

1T+ 1

(x+1)(z+2)(xz+3)

7

D

=1

! 1 1
=2 +
wz+1 wi+2 w; +3

=1

Zw +1

7><16

3w? + 12w; + 11
(wi + 1) (w; + 2)(w; + 3)

L 1
Zw +2+;wi—|—3

7><26 7% 36

2626393

Cr+1

M7 +1 3T+1 282252

0O-Week contest debrief

x+2 x+3

20/2/23

7127

Manhattan’s Quadrilateral (P cpmsoc

1

m Sample two points from the red edge and two from the blue

m Shape is concave, so perimeter is
2 x width + 2 x height = 2 x (max blue — min red) + 2 x (max all — min all)

m Calculating expected values is linear, so just take average of each of these values

m Average maximum of n points is ;% (find CDF, get PDF, calculate fol xP(z)dx)

mSoansweris2x (5 —L)+2x (-4 =28

CPMSoc 0O-Week contest debrief 20/2/23 8/27

Addition P cPMsoc

m This one was also a Lamborghini if you solved it in the first second of the contest.

CPMSoc 0O-Week contest debrief 20/2/23 9/27

Binary Help > cPmsoc

m Just check every ascending power of 2 until you find one that is larger than N
m This is only O(log N), since N was only up to 108 ~ 260

m Also could use binary, check the most significant bit -> then just set next bit to 1 and
all other bits to 0
m 2llogy (N+1)]

CPMSoc 0O-Week contest debrief 20/2/23 10/27

Counting Rectangles (P cPMsOC |shes

m Brute force - count every possible top, left, bottom, right edge of rectangle (O(W?2H?))

CPMSoc 0O-Week contest debrief 20/2/23 11/27

Counting Rectangles P cpmsoc

W(W+1)
2

m Pick any possible left and right edge (

), then any possible top and bottom

= All combmatlons of these = WWEDHULTL

CPMSoc 0O-Week contest debrief 20/2/23 12/27

Burger P cpmsoc

m Can be solved either mathematically or programmatically
m Both solutions require some maths

CPMSoc 0O-Week contest debrief 20/2/23 13/27

Burger 2 CPMSOC |suses

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger P cpmsoc

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger P cpmsoc

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger P cpmsoc

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger P cpmsoc

(2r)? < (H —2r)> + (W — 2r)?

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger P cpmsoc

d? < (H —d)*+ (W —d)?

CPMSoc 0O-Week contest debrief 20/2/23 14/27

Burger Maths Solution (0 cPMSOC |kuss

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H — d)* + (W — d)*
d*> < H?> — 2dH + d*> + W? — 2dW + d?

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H — d)* + (W — d)*
d*> < H?> — 2dH + d*> + W? — 2dW + d?
0< H?+W?—2dH — 2dW + d>

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?

d?> < H? — 2dH + d* + W? — 2dW + d?
0< H?>+W? —2dH — 2dW + d?

0< H>4+W? —2d(H+ W) + d?

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?

d?> < H* — 2dH + d*> + W? — 2dW + d?
0< H?>+W? —2dH — 2dW + d?

0< H>4+W? —2d(H+ W) + d?
0<(H+W)?—-2HW —2d(H + W)+ d*

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?

d?> < H* — 2dH + d*> + W? — 2dW + d?
0< H?+W?—2dH — 2dW + d?

0< H>4+W? —2d(H+ W) + d?
0<(H+W)?—-2HW —2d(H + W)+ d*
0<(H+W)*=2d(H+ W)+ d?

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?
d?> < H* — 2dH + d*> + W? — 2dW + d?
0< H?+W?—2dH — 2dW + d?
0< H>4+W? —2d(H+ W) + d?
0<(H+W)?—-2HW —2d(H + W)+ d*
0<(H+W)*=2d(H+ W)+ d?

2HW < (H +W — d)?

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?
d?> < H* — 2dH + d*> + W? — 2dW + d?
0< H?+W?—2dH — 2dW + d?
0< H>4+W? —2d(H+ W) + d?
0<(H+W)?—-2HW —2d(H + W)+ d*
0<(H+W)*=2d(H+ W)+ d?
2HW < (H +W — d)?
V2HW < H+W —d

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Maths Solution (P cpmsoc

d? < (H —d)* + (W —d)?
d?> < H* — 2dH + d*> + W? — 2dW + d?
0< H?+W?—2dH — 2dW + d?
0< H>4+W? —2d(H+ W) + d?
0<(H+W)?—-2HW —2d(H + W)+ d*
0<(H+W)*=2d(H+ W)+ d?
2HW < (H +W — d)?

V2HW < H+W —d

d<H+W —V2HW

CPMSoc 0O-Week contest debrief 20/2/23 15/27

Burger Programming Solution P cPMsOC sz

CPMSoc 0O-Week contest debrief 20/2/23 16/27

Burger Programming Solution P cPMsOC sz

Binary Search!

CPMSoc 0O-Week contest debrief 20/2/23 16/27

Burger Programming Solution P cpmsoc

def can_fit(d, W, H):
if d >Wor d > H:
return False
elif d+«+2 > (W-d)*+2 + (H-d)=*x2:
return False
else:
return True

I, r =1, max(W, H + 1

while r - | > 1:
m= (l+r) // 2
if can_fit(m, W, H): | =m

else: r =m

print (1)

CPMSoc 0O-Week contest debrief 20/2/23 17/27

Gerrymandering > cPmsoc
m A modified version of maximum subarray sum, also called largest sum contiguous
subarray

m Observation: when checking A, use a subarray sum by setting all voters for A to be 1
and all voters for B to be —1

m Two pointer technique or Kadane’s algorithm to find largest sum for A and B

CPMSoc 0O-Week contest debrief 20/2/23 18/27

Gerrymandering > cPmsoc

def best_margin(array, cand):
best, curr_sum = 0, 0
for vote in array:

if vote == cand:
curr_sum += 1
else:
curr_sum -= 1

best = max(best, curr_sum)
curr_sum = max(curr_sum, 0)
return best

a best_margin(array, 'A’)
b = best_margin(array, 'B’)
if a>b: print(’'A’)

elif a < b: print(’'B’)
else: print(’'BOTH’)

print (max(a, b))

CPMSoc 0O-Week contest debrief 20/2/23 19/27

Shapes 2 cpmsoc

The key to this question is making observations.
First here are the rules:

m The shape must be convex. This means that everything between two filled squares
are also filled. (1)

m The shape is vertically and horizontally symmetric (2)
m The shape must be exactly a height of H and a width of W. (3)

CPMSoc 0O-Week contest debrief 20/2/23 20/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes 2 cPMsOC |g

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes > cPMmsoc

CPMSoc O-Week contest debrief 20/2/23 21/27

Shapes QWD CPMSOC [stves
a_right[0][0] = 1

for i in range(R+1):
for j in range(C+1):
if j > 0:
a_right[i][j]
b_right[i][]j]

(a_right[i][j-1] + a_down[i][]j-1]) % mod
(b_down[i][j-1]) % mod

if i > 0:
a_down[i][]j] = (a_right[i-1]1[j]) % mod
b down[i][j] = (a_down[i-1][j] + b_right[i-1][j] + b_down[i-1][]j]) %

def solve(r, c):
return (a_right[r][c] + a_down[r][c] + b_right[r][c] + b_down[r][c]) %

print(solve (R, C))

CPMSoc 0O-Week contest debrief 20/2/23 22/27

Isaiah’s Unsolved P cPMsoc

For simplicity, number the nodes of the DAG according to their toplogical ordering so that
the adjacency matrix is an upper triangular matrix. Let A be the adjacency matrix of the
DAG, e be a column vector of n 1's and e’ be its transpose. Then, the sum of matrix
entries is e’ x A x e. Note that A is nilpotent iff graph is acyclic, so let k be an integer such
that A = 0.

Then e(G) —o(G) = —eT x A% e+ el x Alse— ...+ (—=1)t xeT x Alt — 1) x e. Since matrix
multiplication is distributive, this equals: e” s (=A% + A — A% + ... 4+ (=1)t x Alt — 1)) xe.
The middle part is a geometric series with matrices, which we can derive a formula for as
long as A + I is invertible. Note that, because our construction, A + I is also upper
triangular, and has 1’s along its diagonals, so it’s invertible (though this applies generally
for any A + I where A is nilpotent). Thus, e(G) — o(G) = €T x (—(A+1)7!) xe.

For simplicity, let’s try and maximise/minimise the sum of entries of (A + I)~! (so now we
are maximising/minimising o(G) — e(G)).

We can find the inverse matrix by performing row operations to transform

CPMSoc 0O-Week contest debrief 20/2/23 23/27

Isaiah’s Unsolved P cPMsoc

(A+ 1| 1)into (I'| (A + 1)~1).Realisethat, because A +
Iisaninvertibleuppertriangularmatrizo f0' sandl’ sonly, wecandescribethisbythe followingal,
foreachrow, starting fromthebottomandgoingtothetop, checkallcolumnscontainingalexclud
TOWC], TOWT — TOWC3, ..., TOWT — TOWCE).

Since all we care about is the sum of matrix entries, we can reduce this to only thinking
about the sums of values on each row:

Starting with an array V of n 1’s ([1, 1, ..., 1]), from i = 1 to n (1-indexing), we may choose

to perform V[i] -= V[j] for unique values of j, where 1 <= <.

If we subtract by a net positive value, we might as well subtract the maximum possible
amount we can for the sake of adding more value to our maximisation/minimisation later

on, which will be the sum of all positive values, and similarly with a net negative value,
which will be the sum of all negative values.

Therefore, we can reduce this problem further to considering two variables x, y (which

start of as 0), where x is the sum of positive terms and y is the sum of negative terms, and
in each of n turns, we can choose to addy + 1 to x or x - 1 to y. for n <= 4, programming

N a _
CPMSoc 0O-Week contest debrief 20/2/23 24 /27

Isaiah’s unsolved 2 cpMsoc

, 3), (0, 4) and I'm guessing the proof for the last step (where you show the
maximum/minimum value of the x, y recurrence relation) involves saying that, after a
certain point, the best way to "grow" x and y is by alternating which one you add to
(maybe up until a number of steps?), since, excluding the constant factors of adding 1 and
-1, this is just the fibonacci sequence, and when x - y is calculated, you get something
along those lines? idk anyway plugging in n > 5 into oeis shows the values are (probably):

(_anl + 2a anl + 2)a

where F,, is the nth Fibonacci number (where the first 5 are 1,1, 2, 3, 5)

CPMSoc 0O-Week contest debrief 20/2/23 25/27

Attendance form :D 0 cPMSOC [skuss

CPMSoc 0O-Week contest debrief 20/2/23 26 /27

Further events 2 cpMsoc

Please join us for:
m Social session tomorrow
m Programming workshop next week
m Maths workshop in two weeks

CPMSoc 0O-Week contest debrief 20/2/23 27 /27

	Introduction
	Welcome

	Mathematics Solutions
	Quick Sum
	Drawing Aces
	Find a Function
	Triangular Edges
	Horrendously Complex
	Manhattan's Quadrilateral

	Programming Solutions
	Addition
	Binary Help
	Counting Rectangles
	Burger
	Gerrymandering
	Shapes
	Isaiah's Unsolved

	Thanks for coming!
	Food acquisition

