
Problem Debrief
CSESoc x CPMSoc Programming Contest 2021

Isaiah Iliffe, Joseph Luo, Angus Ritossa

Problems
1. CSESoc and CPMSoc

2. Fruitful Purchase

3. Two Scoops

4. Typing Champ

5. Farmer Joe

6. Dodgy Dominoes

7. Ingredients Label

8. Connect Four Cheater

9. Gradient

10. Strange Store

11. Cylinder Climb

12. Train Network

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 1 / 17

1. CSESoc and CPMSoc
Problem

Given a string, determine whether it be rearranged to spell "CSESOC" and/or "CPM-
SOC".

Solution
We simply want to check if each character of the string input has any character in
"CSESOC" and/or "CPMSOC".
The only characters that are not in both "CSESOC" and "CPMSOC" are ’E’ and ’M’,
respectively.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 2 / 17

1. CSESoc and CPMSoc
Problem

Given a string, determine whether it be rearranged to spell "CSESOC" and/or "CPM-
SOC".

Solution

We simply want to check if each character of the string input has any character in
"CSESOC" and/or "CPMSOC".
The only characters that are not in both "CSESOC" and "CPMSOC" are ’E’ and ’M’,
respectively.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 2 / 17

1. CSESoc and CPMSoc
Problem

Given a string, determine whether it be rearranged to spell "CSESOC" and/or "CPM-
SOC".

Solution
We simply want to check if each character of the string input has any character in
"CSESOC" and/or "CPMSOC".

The only characters that are not in both "CSESOC" and "CPMSOC" are ’E’ and ’M’,
respectively.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 2 / 17

1. CSESoc and CPMSoc
Problem

Given a string, determine whether it be rearranged to spell "CSESOC" and/or "CPM-
SOC".

Solution
We simply want to check if each character of the string input has any character in
"CSESOC" and/or "CPMSOC".
The only characters that are not in both "CSESOC" and "CPMSOC" are ’E’ and ’M’,
respectively.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 2 / 17

CSESOC and CPMSOC - Code
keys = input().strip()
csesoc = all(c in keys for c in 'CSESOC')
cpmsoc = all(c in keys for c in 'CPMSOC')
if csesoc and cpmsoc:

print('BOTH')
elif cpmsoc:

print('CPMSOC')
elif csesoc:

print('CSESOC')
else:

print('NEITHER')

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 3 / 17

2. Fruitful Purchase
Problem

The shop lets you buy a single apple for X dollars, a single banana for Y dollars, or
an apple and a banana together for Z dollars. You want to buy exactly A apples and B
bananas. What is the smallest amount of money you can spend?

Solution
If the total price of an apple and a banana is more than the deal, we want to take the
deal as many as possible (until we have the amount of apples or banana we want)

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 4 / 17

2. Fruitful Purchase
Problem

The shop lets you buy a single apple for X dollars, a single banana for Y dollars, or
an apple and a banana together for Z dollars. You want to buy exactly A apples and B
bananas. What is the smallest amount of money you can spend?

Solution

If the total price of an apple and a banana is more than the deal, we want to take the
deal as many as possible (until we have the amount of apples or banana we want)

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 4 / 17

2. Fruitful Purchase
Problem

The shop lets you buy a single apple for X dollars, a single banana for Y dollars, or
an apple and a banana together for Z dollars. You want to buy exactly A apples and B
bananas. What is the smallest amount of money you can spend?

Solution
If the total price of an apple and a banana is more than the deal, we want to take the
deal as many as possible (until we have the amount of apples or banana we want)

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 4 / 17

2. Fruitful Purchase - Code
// Solution by Angus
// Naive O(a+b) solution
#include <bits/stdc++.h>
using namespace std;
int main() {

int x, y, z, a, b;
scanf("%d%d%d%d%d", &x, &y, &z, &a, &b);
int ans = 0;
while (a || b) {

if (a && b && z < x+y) {
// Take the deal
a--;
b--;
ans += z;

} else if (a) {
// Buy a
a--;
ans += x;

} else {
// Buy b
b--;
ans += y;

}
}
printf("%d\n", ans);

}

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 5 / 17

3. Two Scoops
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Find the tastiest top only flavour, the tastiest bottom only flavour and the tastiest and
second tastiest either flavour.
Consider the options: top + bottom, either + bottom, top + either, either + either

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 6 / 17

3. Two Scoops
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution

Find the tastiest top only flavour, the tastiest bottom only flavour and the tastiest and
second tastiest either flavour.
Consider the options: top + bottom, either + bottom, top + either, either + either

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 6 / 17

3. Two Scoops
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Find the tastiest top only flavour, the tastiest bottom only flavour and the tastiest and
second tastiest either flavour.

Consider the options: top + bottom, either + bottom, top + either, either + either

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 6 / 17

3. Two Scoops
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Find the tastiest top only flavour, the tastiest bottom only flavour and the tastiest and
second tastiest either flavour.
Consider the options: top + bottom, either + bottom, top + either, either + either

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 6 / 17

4. Typing Champ
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Intuition: initially set the number = 1. If the commands are ’U’ or ’D’, you want to
decrement or increment the number by 3, respectively. Similarly with ’L’ or ’R’,
decrement or increment the number by 1.
Once we got ’P’, we will store the number into a passcode array.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 7 / 17

4. Typing Champ
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution

Intuition: initially set the number = 1. If the commands are ’U’ or ’D’, you want to
decrement or increment the number by 3, respectively. Similarly with ’L’ or ’R’,
decrement or increment the number by 1.
Once we got ’P’, we will store the number into a passcode array.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 7 / 17

4. Typing Champ
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Intuition: initially set the number = 1. If the commands are ’U’ or ’D’, you want to
decrement or increment the number by 3, respectively. Similarly with ’L’ or ’R’,
decrement or increment the number by 1.

Once we got ’P’, we will store the number into a passcode array.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 7 / 17

4. Typing Champ
Problem

There are N flavours of ice cream, each with a tastiness value. You want to pick the
tastiest 2-scoop ice cream (with different flavours), however some flavours must go at
the top, some on the bottom, and some can go on either the top or bottom.

Solution
Intuition: initially set the number = 1. If the commands are ’U’ or ’D’, you want to
decrement or increment the number by 3, respectively. Similarly with ’L’ or ’R’,
decrement or increment the number by 1.
Once we got ’P’, we will store the number into a passcode array.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 7 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution
Try every point as the centre, and print the maximum score.
For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).
Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).
Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution

Try every point as the centre, and print the maximum score.
For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).
Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).
Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution
Try every point as the centre, and print the maximum score.

For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).
Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).
Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution
Try every point as the centre, and print the maximum score.
For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).

Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).
Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution
Try every point as the centre, and print the maximum score.
For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).
Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).

Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe
Problem

Given a square grid of integers. For each cell, its score is the sum of all cells NOT in a
line N, S, E, W, NE, NW, SE or SW from it. Find the maximum score of any cell.

Solution
Try every point as the centre, and print the maximum score.
For each centre, we can find the sum when it is the centre in O(N2) (overall solution
O(N4)).
Idea: find the sum of the cells not included, and subtract from the total. Can find the
sum of the cells not included in O(N3) (overall solution O(N3)).
Better idea: pre-compute the sum of each row, column and diagonal. Then we can
find the sum of cells not included in O(1) (overall solution O(N2)).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 8 / 17

5. Farmer Joe - Code
#include <stdio.h>
#define MAXN 2010
int N, A[MAXN][MAXN], total, row[MAXN], column[MAXN], diag1[MAXN], diag2[MAXN], ans;
int main() {

scanf("%d", &N);
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
scanf("%d", &A[i][j]);
total += A[i][j];
diag1[i+j] += A[i][j];
diag2[i-j+N] += A[i][j];
row[i] += A[i][j];
column[j] += A[i][j];

}
}
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
int am = total - diag1[i+j] - diag2[i-j+N] - row[i] - column[j] + A[i][j]*3;
if (am > ans) {

ans = am;
}

}
}
printf("%d\n", ans);

}

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 9 / 17

6. Dodgy Dominoes
Problem

Given a sequence of dominoes in a line, each with a weight, determine the minimum
number of pushes to knock them all over. Dominoes can only knock over dominoes of
lower or equal weight.

Sample Input
6

2 2 3 2 1 10

Sample Output
3

Solution
Can reframe the problem to decomposing the sequence into as few weakly
monotonic sequences as possible.
Go from left to right, keeping track of whether you are in an increasing sequence,
decreasing sequence, or either (in the case of a streak of things of the same weight).
Alternatively, after collapsing streaks of the same weight, the answer is something
like 1+ (number of local maxes) + (number of local mins) − (number of pairs of
adjacent local maxes and mins).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 10 / 17

6. Dodgy Dominoes
Problem

Given a sequence of dominoes in a line, each with a weight, determine the minimum
number of pushes to knock them all over. Dominoes can only knock over dominoes of
lower or equal weight.

Solution
Can reframe the problem to decomposing the sequence into as few weakly
monotonic sequences as possible.
Go from left to right, keeping track of whether you are in an increasing sequence,
decreasing sequence, or either (in the case of a streak of things of the same weight).
Alternatively, after collapsing streaks of the same weight, the answer is something
like 1+ (number of local maxes) + (number of local mins) − (number of pairs of
adjacent local maxes and mins).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 10 / 17

6. Dodgy Dominoes - Code
#include <stdio.h>

int N, w[100005], ans = 1;
int mode; // 0: undecided, 1: increasing, 2: decreasing

int main() {
scanf("%d", &N);
scanf("%d", &w[0]);
for (int i = 1; i < N; i++) {

scanf("%d", &w[i]);
if (w[i] > w[i-1]) {

if (mode == 0) mode = 1;
if (mode == 2) mode = 0, ans++;

}
if (w[i] < w[i-1]) {

if (mode == 0) mode = 2;
if (mode == 1) mode = 0, ans++;

}
}
printf("%d\n", ans);

}

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 11 / 17

7. Ingredients Label
Problem

There is a food which has N ingredients listed on the back. Originally, this was accom-
panied by the correct percentages of each ingredient, p1, p2, ..., pN . It was known that

1 p is non-increasing
2 each pi is a positive integer
3 sum of all pi is 100.

But the company sneakily deleted some percentages. Find a possible allocation or say
none exists

Sample Input: 50 -1 -1 10 -1
Sample Output: 50 20 10 10 10 (there are other possible correct answers, such as 50 20
19 10 1)

Each unknown value has a maximum and minimum based on the values to its left
and right
First assign every value its maximum possible value. If the sum is bigger than 100,
loop from right to left and decrease the unknown values until the sum is 100. If we
can’t do this, then it’s impossible.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 12 / 17

7. Ingredients Label
Problem

There is a food which has N ingredients listed on the back. Originally, this was accom-
panied by the correct percentages of each ingredient, p1, p2, ..., pN . It was known that

1 p is non-increasing
2 each pi is a positive integer
3 sum of all pi is 100.

But the company sneakily deleted some percentages. Find a possible allocation or say
none exists

Each unknown value has a maximum and minimum based on the values to its left
and right

First assign every value its maximum possible value. If the sum is bigger than 100,
loop from right to left and decrease the unknown values until the sum is 100. If we
can’t do this, then it’s impossible.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 12 / 17

7. Ingredients Label
Problem

There is a food which has N ingredients listed on the back. Originally, this was accom-
panied by the correct percentages of each ingredient, p1, p2, ..., pN . It was known that

1 p is non-increasing
2 each pi is a positive integer
3 sum of all pi is 100.

But the company sneakily deleted some percentages. Find a possible allocation or say
none exists

Each unknown value has a maximum and minimum based on the values to its left
and right
First assign every value its maximum possible value.

If the sum is bigger than 100,
loop from right to left and decrease the unknown values until the sum is 100. If we
can’t do this, then it’s impossible.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 12 / 17

7. Ingredients Label
Problem

There is a food which has N ingredients listed on the back. Originally, this was accom-
panied by the correct percentages of each ingredient, p1, p2, ..., pN . It was known that

1 p is non-increasing
2 each pi is a positive integer
3 sum of all pi is 100.

But the company sneakily deleted some percentages. Find a possible allocation or say
none exists

Each unknown value has a maximum and minimum based on the values to its left
and right
First assign every value its maximum possible value. If the sum is bigger than 100,
loop from right to left and decrease the unknown values until the sum is 100.

If we
can’t do this, then it’s impossible.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 12 / 17

7. Ingredients Label
Problem

There is a food which has N ingredients listed on the back. Originally, this was accom-
panied by the correct percentages of each ingredient, p1, p2, ..., pN . It was known that

1 p is non-increasing
2 each pi is a positive integer
3 sum of all pi is 100.

But the company sneakily deleted some percentages. Find a possible allocation or say
none exists

Each unknown value has a maximum and minimum based on the values to its left
and right
First assign every value its maximum possible value. If the sum is bigger than 100,
loop from right to left and decrease the unknown values until the sum is 100. If we
can’t do this, then it’s impossible.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 12 / 17

8. Connect Four Cheater
Problem

Given a Connect Four grid (6 rows and 7 columns, where each cell is red, blue or empty),
output a sequence of moves by the red player of minimum length that gets four in a row.

Sample Input
.......

.......

...R...

...B...

..BRR..

.BRBRBR

Sample Output
5 5

Solution
Try every possible location of a four in a row.

Check if it is possible, that is, there are no blue things in the way.
Calculate minimum moves to get to it, that is, for each empty cell you want to fill, add
one for the difference between original and final height (column is slightly different but
easier).

Alternatively, try all move sequences recursively (making moves in columns in
non-decreasing order), or by trying every possible number of moves in each column.
O(6× 7× 67).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 13 / 17

8. Connect Four Cheater
Problem

Given a Connect Four grid (6 rows and 7 columns, where each cell is red, blue or empty),
output a sequence of moves by the red player of minimum length that gets four in a row.

Solution
Try every possible location of a four in a row.

Check if it is possible, that is, there are no blue things in the way.
Calculate minimum moves to get to it, that is, for each empty cell you want to fill, add
one for the difference between original and final height (column is slightly different but
easier).

Alternatively, try all move sequences recursively (making moves in columns in
non-decreasing order), or by trying every possible number of moves in each column.
O(6× 7× 67).

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 13 / 17

9. Gradient
Problem

Given a list of N points in 2D space, no two sharing an x-coordinate, find the largest
gradient of any line passing through two points.
N ≤ 200 000.

Observation: Sort points by x-coordinates, the biggest slope will always be between
two points which are adjacent.
Solution: sort by x coordinate and compare adjacent points.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 14 / 17

9. Gradient
Problem

Given a list of N points in 2D space, no two sharing an x-coordinate, find the largest
gradient of any line passing through two points.
N ≤ 200 000.

Observation: Sort points by x-coordinates, the biggest slope will always be between
two points which are adjacent.

Solution: sort by x coordinate and compare adjacent points.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 14 / 17

9. Gradient
Problem

Given a list of N points in 2D space, no two sharing an x-coordinate, find the largest
gradient of any line passing through two points.
N ≤ 200 000.

Observation: Sort points by x-coordinates, the biggest slope will always be between
two points which are adjacent.
Solution: sort by x coordinate and compare adjacent points.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 14 / 17

10. Strange Shop
Problem

Given an array P of integers, determine the largest absolute sum of any subarray which
is less than or equal to M .

Sample Input
3 2

3 -4 7

Sample Output
1

Solution
O(N3): calculate the sum of each range naively.
O(N2): calculate the sum of each range using prefix sums or similar.
P [i] > 0: for each left endpoint, calculate the rightmost valid endpoint that keeps sum
under or equal to M , using two pointers or binary search or segment tree.
O(N logN): calculate prefix array pre, and determine largest pre[r]− pre[l− 1] which
is less than or equal to M , using two pointers on sorted array. Allowing r < l
accounts for absolute value for free.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 15 / 17

10. Strange Shop
Problem

Given an array P of integers, determine the largest absolute sum of any subarray which
is less than or equal to M .

Solution
O(N3): calculate the sum of each range naively.

O(N2): calculate the sum of each range using prefix sums or similar.
P [i] > 0: for each left endpoint, calculate the rightmost valid endpoint that keeps sum
under or equal to M , using two pointers or binary search or segment tree.
O(N logN): calculate prefix array pre, and determine largest pre[r]− pre[l− 1] which
is less than or equal to M , using two pointers on sorted array. Allowing r < l
accounts for absolute value for free.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 15 / 17

10. Strange Shop
Problem

Given an array P of integers, determine the largest absolute sum of any subarray which
is less than or equal to M .

Solution
O(N3): calculate the sum of each range naively.
O(N2): calculate the sum of each range using prefix sums or similar.

P [i] > 0: for each left endpoint, calculate the rightmost valid endpoint that keeps sum
under or equal to M , using two pointers or binary search or segment tree.
O(N logN): calculate prefix array pre, and determine largest pre[r]− pre[l− 1] which
is less than or equal to M , using two pointers on sorted array. Allowing r < l
accounts for absolute value for free.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 15 / 17

10. Strange Shop
Problem

Given an array P of integers, determine the largest absolute sum of any subarray which
is less than or equal to M .

Solution
O(N3): calculate the sum of each range naively.
O(N2): calculate the sum of each range using prefix sums or similar.
P [i] > 0: for each left endpoint, calculate the rightmost valid endpoint that keeps sum
under or equal to M , using two pointers or binary search or segment tree.

O(N logN): calculate prefix array pre, and determine largest pre[r]− pre[l− 1] which
is less than or equal to M , using two pointers on sorted array. Allowing r < l
accounts for absolute value for free.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 15 / 17

10. Strange Shop
Problem

Given an array P of integers, determine the largest absolute sum of any subarray which
is less than or equal to M .

Solution
O(N3): calculate the sum of each range naively.
O(N2): calculate the sum of each range using prefix sums or similar.
P [i] > 0: for each left endpoint, calculate the rightmost valid endpoint that keeps sum
under or equal to M , using two pointers or binary search or segment tree.
O(N logN): calculate prefix array pre, and determine largest pre[r]− pre[l− 1] which
is less than or equal to M , using two pointers on sorted array. Allowing r < l
accounts for absolute value for free.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 15 / 17

11. Cylinder
Problem

Given an R × C grid with point values, find the maximum walk from some square on the
bottom row to some square on the top row. You can only move up, left or right, and can
wrap around the grid between column 0 and C − 1. You cannot step on a square more
than once. R,C ≤ 1 000.

We will use dynamic programming.
O(RC2) dp: state is the row and column, and recurrence is you try every other cell on
the row as the first cell you visited in the row.
O(RC) use prefix sum to do the recurrence efficiently.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 16 / 17

11. Cylinder
Problem

Given an R × C grid with point values, find the maximum walk from some square on the
bottom row to some square on the top row. You can only move up, left or right, and can
wrap around the grid between column 0 and C − 1. You cannot step on a square more
than once. R,C ≤ 1 000.

We will use dynamic programming.

O(RC2) dp: state is the row and column, and recurrence is you try every other cell on
the row as the first cell you visited in the row.
O(RC) use prefix sum to do the recurrence efficiently.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 16 / 17

11. Cylinder
Problem

Given an R × C grid with point values, find the maximum walk from some square on the
bottom row to some square on the top row. You can only move up, left or right, and can
wrap around the grid between column 0 and C − 1. You cannot step on a square more
than once. R,C ≤ 1 000.

We will use dynamic programming.
O(RC2) dp: state is the row and column, and recurrence is you try every other cell on
the row as the first cell you visited in the row.

O(RC) use prefix sum to do the recurrence efficiently.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 16 / 17

11. Cylinder
Problem

Given an R × C grid with point values, find the maximum walk from some square on the
bottom row to some square on the top row. You can only move up, left or right, and can
wrap around the grid between column 0 and C − 1. You cannot step on a square more
than once. R,C ≤ 1 000.

We will use dynamic programming.
O(RC2) dp: state is the row and column, and recurrence is you try every other cell on
the row as the first cell you visited in the row.
O(RC) use prefix sum to do the recurrence efficiently.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 16 / 17

12. Train Network
Problem

Given an undirected weighted graph, find the cheapest path from node 1 to node N ,
where a path’s cost is the sum of the two largest edge weights on it. There is no edge
between node 1 and node N , and N,M ≤ 100 000.

Solution
O(N3): for every pair of edges, see if there exists a valid path using only edges
cheaper than both edges in that pair, using DFS or similar.
Õ(N2): try every edge as the most expensive, and find the minimum maximum edge
cost to then connect node 1 and node N , using Prim’s, or MST, or binary search.
Õ(N): precalculate minimum maximum edge cost to each node from node 1 and
from node N , then try every edge as the most expensive. Edge can only be a most
expensive edge if it’s more expensive then minimum maximum both ways.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 17 / 17

12. Train Network
Problem

Given an undirected weighted graph, find the cheapest path from node 1 to node N ,
where a path’s cost is the sum of the two largest edge weights on it. There is no edge
between node 1 and node N , and N,M ≤ 100 000.

Solution
O(N3): for every pair of edges, see if there exists a valid path using only edges
cheaper than both edges in that pair, using DFS or similar.

Õ(N2): try every edge as the most expensive, and find the minimum maximum edge
cost to then connect node 1 and node N , using Prim’s, or MST, or binary search.
Õ(N): precalculate minimum maximum edge cost to each node from node 1 and
from node N , then try every edge as the most expensive. Edge can only be a most
expensive edge if it’s more expensive then minimum maximum both ways.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 17 / 17

12. Train Network
Problem

Given an undirected weighted graph, find the cheapest path from node 1 to node N ,
where a path’s cost is the sum of the two largest edge weights on it. There is no edge
between node 1 and node N , and N,M ≤ 100 000.

Solution
O(N3): for every pair of edges, see if there exists a valid path using only edges
cheaper than both edges in that pair, using DFS or similar.
Õ(N2): try every edge as the most expensive, and find the minimum maximum edge
cost to then connect node 1 and node N , using Prim’s, or MST, or binary search.

Õ(N): precalculate minimum maximum edge cost to each node from node 1 and
from node N , then try every edge as the most expensive. Edge can only be a most
expensive edge if it’s more expensive then minimum maximum both ways.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 17 / 17

12. Train Network
Problem

Given an undirected weighted graph, find the cheapest path from node 1 to node N ,
where a path’s cost is the sum of the two largest edge weights on it. There is no edge
between node 1 and node N , and N,M ≤ 100 000.

Solution
O(N3): for every pair of edges, see if there exists a valid path using only edges
cheaper than both edges in that pair, using DFS or similar.
Õ(N2): try every edge as the most expensive, and find the minimum maximum edge
cost to then connect node 1 and node N , using Prim’s, or MST, or binary search.
Õ(N): precalculate minimum maximum edge cost to each node from node 1 and
from node N , then try every edge as the most expensive. Edge can only be a most
expensive edge if it’s more expensive then minimum maximum both ways.

Isaiah Iliffe, Joseph Luo, Angus Ritossa Problem Debrief 30 Oct 2021 17 / 17

	1. CSESoc and CPMSoc
	2. Fruitful Purchase
	3. Two Scoops
	4. Typing Champ
	5. Farmer Joe
	6. Dodgy Dominoes
	7. Ingredients Label
	8. Connect Four Cheater
	9. Gradient
	10. Strange Store
	11. Cylinder Climb
	12. Train Network

