
Programming Workshop #2
IMC Competition Solutions Walkthrough

Tunan Shi et al.

CPMSOCCredits
Doss Product: Isaiah Iliffe, Tunan Shi
Jonathan and Tunan’s Sweets: Jonathan Lam, Joseph Luo
All of the Above: Isaiah Iliffe, Joseph Luo
IMC Banner I/II (Div A and B): Isaiah Iliffe, Tunan Shi, Angus Ritossa
Trading at IMC I/II (Div A and B): Isaiah Iliffe, Angus Ritossa
CSESocial Distancing: Isaiah Iliffe, Jonathan Lam
Cece’s Honeycomb: Joseph Luo, Jonathan Lam
Pear Pairs: Angus Ritossa, Tunan Shi, Isaiah Iliffe
Laser Cutting: Tunan Shi, Isaiah Iliffe
Housing Restrictions: Isaiah Iliffe, Tunan Shi, Joseph Luo
Infinity War Spoilers: Tunan Shi, Isaiah Iliffe
Mexican Wave: Tunan Shi, Angus Ritossa

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 1 / 32

CPMSOCTable of contents

1 Distancing

2 Honeycomb

3 Pear Pairs

4 Banner II

5 Restrictions

6 Mexican Wave

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 2 / 32

CPMSOCCSESocial Distancing
Problem

What is the minimum number of seats required to seat n people in a circular table, given
the kth person must be Ak seats away from any other person?

Sample Input
3
1 2 3
Sample Output
8
Constraints: 1 ≤ N ≤ 100000, 1 ≤ Ai ≤ 100
Subtask: 1 ≤ N ≤ 10

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 3 / 32

CPMSOCDistancing

3

3

2

2
1

1

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 4 / 32

CPMSOCDistancing
It is worthwhile trying out small cases by hand!
N = 1: Just one seat is needed
N = 2: 2×max(A1, A2)

N = 3: not as obvious?
Try a greedy approach:

Sort the distances and seat the people in that order
This ensures no ‘extra’ seats are reserved unnecessarily... except
The gap between the ‘most sick’ and ‘least sick’.
Total seats: All the distances, except the smallest, plus the
Last gap size: max(A)

Formula:
Min seats =

{
1 for N = 1

sum(A)−min(A) + max(A) for N > 1

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 5 / 32

CPMSOCDistancing
Solution by Jonathan
N = int(input())
A = list(map(int, input().split()))

if (N == 1):
print("1")

else:
print(sum(A) + max(A) - min(A))

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 6 / 32

CPMSOCHoneycomb
Problem

A honeycomb is composed of a collection of cells of the same size. The length of a side
of the honeycomb is the number of hexagons that makes up that side. Find the number
of cells with side lengths A, B, C, D, E, and F in clockwise order.

Sample Input
6 6 7 3 9 4
Sample Output
81
Constraints: 2 ≤ A,B,C,D,E, F ≤ 5000

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 7 / 32

CPMSOCHoneycomb
Whenever there’s an equiangular hexagon, always try to extend sides to form an
equilateral triangle! This will provide you with sufficient information to find the missing
lengths.

From This To This

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 8 / 32

CPMSOCHoneycomb

The figure gives us information that
the number of cells in honeycomb = (the number of cells in the big triangle) - (the
number of cells in three red triangles).
The length of big triangle is F +A+B − 2, and consecutively B − 1, D − 1, F − 1 for
the red-sided triangles.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 9 / 32

CPMSOCHoneycomb
The number of cells in a triangle can be obtained from the triangular number.
The triangular numbers formula:

Tn =

n∑
i=1

i =
n(n+ 1)

2

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 10 / 32

CPMSOCHoneycomb - Python Code
#include <cstdio>

int main(){
int a, b, c, d, e, f;
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &e, &f);
printf("%d\n", (f+a+b-2)*(f+a+b-1)/2
-(f-1)*f/2
-(b-1)*b/2
-(d-1)*d/2
);

}

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 11 / 32

CPMSOCPear Pairs
Problem

Given a sequence of N positive integers, how many distinct ordered pairs of integers can
we make? 1 ≤ N ≤ 100000

Sample Input
5
1 1 2 3 2
Sample Output
6

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 12 / 32

CPMSOCPear Pairs
To count the total number of pairs, we could just test every possible pair of indices in
our sequence.
For each index i, for each index j > i, store the pair (ai, aj), and at the end, count the
number of distinct values.
Too slow, because we have to test all

(
N
2

)
combinations of indices, which is a total of

4999950000!
To see if an algorithm is slow, we can roughly estimate the number of times things
(array elements, variables) are processed, and if it’s significantly bigger than 20
million then it will probably not run in time.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 13 / 32

CPMSOCPear Pairs - A Better Solution?
Observation

If we are choosing the position for our left endpoint (our index i) then we only care about
the leftmost occurrence of each value.

Example
1 2 3 1 4 5

The blue 1 can make the pairs {(1, 4), (1, 5)}
The red 1 can make the pairs {(1, 2), (1, 3), (1, 4), (1, 5)}
Anything the blue 1 can make, the red 1 can also make!
If we only pick the leftmost occurrence of each value as our i, we only have to check
up to KN values, where K is the number of distinct values in the sequence.
This solves the K ≤ 10 subtask which is 50% of test cases.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 14 / 32

CPMSOCPear Pairs - Even Better?
Observation

The number of pairs that an index i can create is equal to the number of distinct ele-
ments after i.

Example
1 2 3 2 2 4 5 4 6

Pairs 1 can make: {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}
Pre-calculate the number of distinct elements after each index. On the next page this
will be the purpose of the array u,
Like last time, only consider the first occurrence of each value. This allows us to
avoid double-counting.
Allows us to check each i very quickly, even if all N elements are distinct!

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 15 / 32

CPMSOCPear Pairs - Pseudocode
Algorithm 1: Pear Pairs
Initialise array u of length N to 0;
Initialise array seen of length N to false;
Initialise integer answer to 0;
for j ← N − 1 to 0 do

if j < N − 1 then
u[j]← u[j + 1]

if not seen[a[j]] then
seen[a[j]]← true;
u[j]← u[j] + 1

Reset array seen of length N to false;
for i← 0 to N − 2 do

if not seen[a[i]] then
seen[a[i]]← true
answer ← answer + u[i+ 1]

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 16 / 32

CPMSOCPear Pairs - Python Code
Solution by Tunan
N, K = [int(x) for x in input().split()]
pears = [int(x) for x in input().split()]

Store whether we've seen a number
seen = [False for _ in range(K+1)]
Store the number of distinct values seen so far
seen_so_far = [0 for _ in range(N)]
ans = 0

for j in range(N-1, -1, -1):
if j < N-1:

seen_so_far[j] = seen_so_far[j+1]
if not seen[pears[j]]:

seen[pears[j]] = True
seen_so_far[j] = seen_so_far[j] + 1

seen = [False for _ in range(K+1)]
for i in range(N-1):

if not seen[pears[i]]:
seen[pears[i]] = True
ans = ans + seen_so_far[i+1]

print(ans)

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 17 / 32

CPMSOCBanner II
Problem

You are given a string consisting of the letters ‘I’, ‘M’ and ‘C’, in any order. You can
erase some of the letters. Determine the maximum number of consecutive strings ‘IMC’
that can be formed, and the number of ways to achieve this maximum. Two ways are
considered different if a letter at a certain position is erased in one way, but not in the
other.

Sample input
8
IMCIMIMC

Sample output
2
3

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 18 / 32

CPMSOCBanner II
If we just want to find the maximum number of IMCs, we can use a greedy algorithm
Take the first I, the next M, the next C, the next I, etc. This will always create the
maximum number of IMCs.
IMCIMIMC

The hard part is counting the number of ways to do it.
We will use dynamic programming for this. We will describe the solution today, and
we will introduce DP more generally in a future workshop!

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 19 / 32

CPMSOCBanner II
In dynamic programming, we split a big problem into subproblems
Let f(i, c) be the maximum number of IMCs we can make if we start at the i-th
character in the input, and for the first IMC we start it at the letter c (where
c ∈ {I,M,C}.
In IMCIMIMC:
f(0, I) = 2, f(1,M) = 2, f(4, I) = 1, f(5, I) = 1, f(6, I) = 0, f(6,M) = 1.
How can we compute this?

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 20 / 32

CPMSOCBanner II

f(i, I) =


0 if i = n

f(i+ 1, I) if si ̸= I

f(i+ 1,M) if si = I

(1)

f(i,M) =


0 if i = n

f(i+ 1,M) if si ̸= M

f(i+ 1, C) if si = M

(2)

f(i, C) =


0 if i = n

f(i+ 1, C) if si ̸= C

f(i+ 1, I) + 1 if si = C

(3)

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 21 / 32

CPMSOCBanner II
Let g(i, x) be defined similarly, except it is the number of ways to achieve the
maximum.

g(i, I) =


1 if i = n

g(i+ 1, I) if si ̸= I

g(i+ 1,M) if si = I and f(i+ 1,M) > f(i+ 1, I)

g(i+ 1,M) + g(i+ 1, I) if si = I and f(i+ 1,M) = f(i+ 1, I)

(4)

Note in the last case, both options lead to optimal solutions, which is why we add the
number of combinations together.
The cases for M and C are similar, and are omitted.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 22 / 32

CPMSOCBanner II
The answers to the original question are f(0, I) and g(0, I).
Time complexity? O(n) states, O(1) recurrence, and so O(n) overall (as long as we
only compute each function once!)
Implementing this isn’t too difficult - each case is just an if statement.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 23 / 32

CPMSOCRestrictions
Problem

You are building on a street with N spaces. Each can have a house or no house on it,
subject to R restrictions, each stating that any Xi consecutive spaces can contain no
more than Yi houses. Print a street with maximum number of houses.

Sample Input
8 2
6 3
3 2
Sample Output
HH__HH_H

Constraints: N ≤ 10000, R ≤ 100
Subtask: N ≤ 100

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 24 / 32

CPMSOCRestrictions
Conjecture

It is optimal to go from left to right and always place a house unless it violates a restriction.

Proof
Suppose we don’t place a house where we could have
Then we can move the next placed house to this spot

Won’t make any houses on the right invalid as we move further away from them
Won’t make any houses on the left invalid by our supposition

We could have been no worse off by placing a house where we could have, hence it is
optimal to do so

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 25 / 32

CPMSOCRestrictions
Conjecture

It is optimal to go from left to right and always place a house unless it violates a restriction.

We can simulate this naively in O(N2R)

For each of the N spaces, we check if building a house breaks any of the R restrictions
Breaking a restriction means building ≥ Yi houses in ≤ Xi spaces for any i
Check each restriction in O(Xi) = O(N)

Use prefix sum to check each restriction in O(1) so total of O(NR)

Exercise: solve the problem in faster complexity than O(NR) or prove impossible or
give a good reason why this is probably impossible

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 26 / 32

CPMSOCRestrictions
N, R = map(int, input().split())
X = list(map(int, input().split()))
Y = list(map(int, input().split())) # input

pre = [0] # pre[x] = how many houses built before or at space x
for i in range(1,N+1):

flag = False
pre.append(pre[-1])
for j in range(R):

x, y = X[j], Y[j]
if pre[i] - pre[max(0, i - x)] >= y: # if placing will violate a restriction

flag = True
if not flag:

pre[-1] += 1
print("H", end='') # build house and update prefix sum

else:
print("_", end='') # don't build

print()

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 27 / 32

CPMSOCMexican Wave
Problem

Given an array of N positive integers, how many subarrays (ranges) of the array have all
the elements 1 to K? 1 ≤ N,K ≤ 100000

Sample Input
5 2
3 2 1 4 2
Sample Output
7

Play around with some testcases by hand!

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 28 / 32

CPMSOCMexican Wave
Observation

If a range of elements el · · · er can form a valid Mexican wave, then so can el−1 · · · er and
el · · · er+1

4 1 2 3 5

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 29 / 32

CPMSOCMexican Wave
Example
1 2 3 1 2 2 3 1 2

Suppose we fix our right endpoint. What is the furthest left endpoint such that it is not
a Mexican wave?

1 2 3 1 2 2 3 1 2
Keep track of how many of each element are in our range, and keep track of whether
any of these values are 0.

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 30 / 32

CPMSOCMexican Wave - Pseudocode
Algorithm 2: Pear Pairs
Initialise array freq of length K + 1 to 0;
Initialise numzeroes← K and answer ← 0 and l← 0;
for r ← 0 to N − 1 do

if e[r] ≤ K then
if freq[e[r]] = 0 then

numzeroes← numzeroes− 1
freq[e[r]]← freq[e[r]] + 1

while numzeroes = 0 do
if e[l] ≤ K then

freq[e[l]]← freq[e[l]]− 1;
if freq[e[l]] = 0 then

numzeroes← numzeroes+ 1
l← l + 1

answer ← answer + l

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 31 / 32

CPMSOCMexican Wave - Python Code
Solution by Tunan
N, K = [int(x) for x in input().split()]
e = [int(x) for x in input().split()]

Array to keep track of how many times we have seen something in our current range
We want at least one value to be seen to count number of invalid ranges.
freq = [0 for _ in range(K+1)]
Number of values that have zero occurrences in our range. Will be updated on our walk.
num_zeroes = K
ans = 0

leftpointer = 0
for rightpointer in range(N):

Add the new element
if e[rightpointer] <= K:

if freq[e[rightpointer]] == 0:
num_zeroes -= 1

freq[e[rightpointer]] += 1
Remove elements until num_zeroes positive
while num_zeroes == 0:

if e[leftpointer] <= K:
freq[e[leftpointer]] -= 1
if freq[e[leftpointer]] == 0:

num_zeroes += 1
leftpointer += 1

Anywhere before the left pointer must be a valid starting position
ans += leftpointer

print(ans)

Tunan Shi et al. Programming Workshop #2 1 Apr 2021 32 / 32

	Distancing
	Honeycomb
	Pear Pairs
	Banner II
	Restrictions
	Mexican Wave

